Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mikolalysenko/delaunay-triangulate
Easy to use robust Delaunay triangulation
https://github.com/mikolalysenko/delaunay-triangulate
Last synced: 4 days ago
JSON representation
Easy to use robust Delaunay triangulation
- Host: GitHub
- URL: https://github.com/mikolalysenko/delaunay-triangulate
- Owner: mikolalysenko
- License: mit
- Created: 2013-10-25T23:21:45.000Z (about 11 years ago)
- Default Branch: master
- Last Pushed: 2014-06-09T21:04:00.000Z (over 10 years ago)
- Last Synced: 2024-12-16T22:34:51.335Z (8 days ago)
- Language: JavaScript
- Size: 1.05 MB
- Stars: 158
- Watchers: 9
- Forks: 22
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
delaunay-triangulate
====================
Triangulates a set of points into a [Delaunay triangulation](http://en.wikipedia.org/wiki/Delaunay_triangulation). This code works in arbitrary dimensions, and both in the server and in the browser.[![testling badge](https://ci.testling.com/mikolalysenko/delaunay-triangulate.png)](https://ci.testling.com/mikolalysenko/delaunay-triangulate)
[![build status](https://secure.travis-ci.org/mikolalysenko/delaunay-triangulate.png)](http://travis-ci.org/mikolalysenko/delaunay-triangulate)
Here are some in browser demos:
* [2D Delaunay triangulation](http://mikolalysenko.github.io/delaunay-triangulate/2d.html)
* [3D Delaunay triangulation](http://mikolalysenko.github.io/delaunay-triangulate/3d.html)# Example
```javascript
var triangulate = require("delaunay-triangulate")var points = [
[0, 1],
[1, 0],
[1, 1],
[0, 0],
[0.5, 0.5]
]var triangles = triangulate(points)
console.log(triangles)
```# Install
npm install delaunay-triangulate
# API
#### `require("delaunay-triangulate")(points[,pointAtInfinity])`
Constructs a Delaunay triangulation over `points`* `points` is a collection of points in Euclidean space.
* `pointAtInfinity` is a flag, which if set adds an extra point at infinity to give the spherical compactification of the triangulation. The index of the point at infinity is `-1`**Returns** A list of cells representing the faces of the triangulation. These are triangles in 2D or tetrahedra in 3D.
# Credits
(c) 2013-2014 Mikola Lysenko. MIT License