Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mikolalysenko/point-in-big-polygon
Industrial strength point in polygon test
https://github.com/mikolalysenko/point-in-big-polygon
Last synced: about 2 months ago
JSON representation
Industrial strength point in polygon test
- Host: GitHub
- URL: https://github.com/mikolalysenko/point-in-big-polygon
- Owner: mikolalysenko
- License: mit
- Created: 2014-03-01T19:53:44.000Z (almost 11 years ago)
- Default Branch: master
- Last Pushed: 2021-06-03T03:05:27.000Z (over 3 years ago)
- Last Synced: 2024-10-24T06:57:24.139Z (2 months ago)
- Language: JavaScript
- Size: 12.7 KB
- Stars: 19
- Watchers: 3
- Forks: 3
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
point-in-big-polygon
====================
Industrial scale point-in-polygon test. Given a polygon, this module preprocesses it in O(n log(n)) time such that any point can be classified against the polygon in O(log(n)) operations. All computations are performed in exact arithmetic.If you want to use multiple polygons/regions, you should use [point-in-region](https://github.com/mikolalysenko/point-in-region) instead.
# Example
```javascript
var preprocessPolygon = require('point-in-big-polygon')//Define the polygon loops
var loops = [
[ [-10, -10], [-10, 10], [10, 10], [10, -10] ],
[ [-1, -1], [1, -1], [1, 1], [-1, 1] ]
]//Preprocess it
var classifyPoint = preprocessPolygon(loops)//Render polygon test in ASCII to console
var img = []
for(var y=-12; y<=12; y+=1) {
var row = []
for(var x=-12; x<=12; x+=0.5) {
var v = classifyPoint([x, y])
if(v < 0) {
row.push('-')
} else if(v === 0) {
row.push('o')
} else {
row.push('+')
}
}
img.push(row.join(''))
}
console.log(img.join('\n'))
```Example output:
```
+++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++++++
++++ooooooooooooooooooooooooooooooooooooooooo++++
++++o---------------------------------------o++++
++++o---------------------------------------o++++
++++o---------------------------------------o++++
++++o---------------------------------------o++++
++++o---------------------------------------o++++
++++o---------------------------------------o++++
++++o---------------------------------------o++++
++++o---------------------------------------o++++
++++o-----------------ooooo-----------------o++++
++++o-----------------o+++o-----------------o++++
++++o-----------------ooooo-----------------o++++
++++o---------------------------------------o++++
++++o---------------------------------------o++++
++++o---------------------------------------o++++
++++o---------------------------------------o++++
++++o---------------------------------------o++++
++++o---------------------------------------o++++
++++o---------------------------------------o++++
++++o---------------------------------------o++++
++++ooooooooooooooooooooooooooooooooooooooooo++++
+++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++++++
```# Install
This module works in any reasonable CommonJS environment including browserify, iojs and node.js.
```
npm install point-in-big-polygon
```# API
## Constructor
#### `var classifyPoint = require("point-in-big-polygon")(loops)`
Preprocess a polygon given by a collection of clockwise oriented loops to handle point membership queries.* `loops` are a collection of oriented loops representing the boundary of the polygon. These loops must be manifold (ie no self intersections or dangling edges).
**Returns** A point membership function that can be used to classify points relative to the function
## Method
#### `classifyPoint(p)`
This function is the result of running the preprocessing operation on a polygon. It takes a single point as input and tests it against the boundary.* `p` is a point encoded as a length 2 array
**Returns** A number which classifies `p` relative to the boundary
* `-1` means that `p` is inside
* `0` means that `p` is on the boundary
* `+1` means that `p` is outside# Credits
(c) 2014 Mikola Lysenko. MIT License