Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/milanowicz/covid-19-dataset

Corona COVID-19 Dataset
https://github.com/milanowicz/covid-19-dataset

coins-data corona coronavirus covid-19 covid-data data-science dataset finance-data jhu johns-hopkins-university rki robert-koch-institut

Last synced: 14 days ago
JSON representation

Corona COVID-19 Dataset

Awesome Lists containing this project

README

        

# COVID-19 Dataset

![](https://img.shields.io/github/repo-size/milanowicz/COVID-19-Dataset)
![](https://img.shields.io/github/languages/code-size/milanowicz/COVID-19-Dataset)

This COVID-19 Dataset should be used for Data Sciene.
Therefore the columns are the same for JHU and RKI data to load them with pandas.

## Case numbers Germany from Robert Koch-Institut (RKI) in Germany

Description of columns:

StateDateConfirmedDeaths

Name of federal state (German Bundesland)
Date in %Y-%m-%d format
Numbers of confirmed cases
Numbers of deaths

[COVID-19-RKI](https://github.com/Milanowicz/COVID-19-RKI)

## Case numbers from Johns Hopkins University (JHU) for the World

[COVID-19-JHU](https://github.com/CSSEGISandData/COVID-19)

### Data by day

Description of columns:

Data: data/jhu/time_series_covid19_confirmed_deaths_recovered.csv

CityStateCountryDateLatitudeLongitudeConfirmedDeathsRecoveredActiveWHO Region

Name from City
Name of federal state
Name from Country
Date in %Y-%m-%d format
Latitude
Longitude
Numbers of confirmed cases
Numbers of deaths
Numbers of recovered
Active = Confirmed - Deaths - Recovered
WHO Region

### Grouped by Day and Country

Data: data/jhu/time_series_covid19_grouped_day_country.csv

DateCountryConfirmedDeathsRecoveredActiveNew casesNew deathsNew recoveredWHO Region

Date in %Y-%m-%d format
Name from Country
Numbers of confirmed cases
Numbers of deaths
Numbers of recovered
Active = Confirmed - Deaths - Recovered
New cases / Day
New deaths / Day
New recovered / Day
WHO Region

### Grouped by all Countries together

Data: data/jhu/time_series_covid19_grouped_by_countries.csv

Columns:

Country
Confirmed
Deaths
Recovered
Active
New cases
New deaths
New recovered
Deaths / 100 Cases
Recovered / 100 Cases
Deaths / 100 Recovered
Confirmed last week
1 week change
1 week % increase
WHO Region

### Grouped by all Days together

Data: data/jhu/time_series_covid19_grouped_by_days.csv

Columns:

Date
Confirmed
Deaths
Recovered
Active
New cases
New deaths
New recovered
Deaths / 100 Cases
Recovered / 100 Cases
Deaths / 100 Recovered
Country Number

## Common data description

Population CSV files

The dataset contains population data of different countries/regions from 1960 to 2018.
There are condensed and region-wise data in the population dataset.

Origin: https://data.worldbank.org/indicator/SP.POP.TOTL

[Kaggle Competion](https://www.kaggle.com/imdevskp/world-population-19602018)

## Install Python environment

Create environment and install Python libs for a GNU/Linux operation system:

$ . env.sh
$ pip3 install pandas urllib shutil wget

## Update Dataset

Update data only

$ . update.sh

Update, commit and push data

$ . aupdate.sh

or manually

$ python get_data.py