https://github.com/miliar/tech-stack-demand
An example microservice pipeline to visualize the tech stack demand on the current job market
https://github.com/miliar/tech-stack-demand
apache-kafka data-pipeline docker docker-compose example flask html-css-javascript indeed jinja2 jobsearch jobseeker kafka microservices neo4j python python3 redis scraper stackexchange tech-stacks
Last synced: 3 months ago
JSON representation
An example microservice pipeline to visualize the tech stack demand on the current job market
- Host: GitHub
- URL: https://github.com/miliar/tech-stack-demand
- Owner: miliar
- Created: 2019-08-23T08:40:44.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2019-09-22T14:27:53.000Z (about 6 years ago)
- Last Synced: 2025-04-09T22:45:03.530Z (6 months ago)
- Topics: apache-kafka, data-pipeline, docker, docker-compose, example, flask, html-css-javascript, indeed, jinja2, jobsearch, jobseeker, kafka, microservices, neo4j, python, python3, redis, scraper, stackexchange, tech-stacks
- Language: Python
- Homepage:
- Size: 16.9 MB
- Stars: 6
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Tech stack demand
An example microservice pipeline to visualize the tech stack demand on the current job market.#### Show who is using certain technologies:
#### Search for company:
## Installation
* [Install docker/docker-compose](https://docs.docker.com/compose/install/)
* Assure docker has enough resources (Preferences > Advanced; tested with 4 CPUs and 6 GiB RAM)
* Run `docker-compose up`
* Open in your browser http://localhost:5000/
* Collect new data (reload page to see progress; this can take up to 20 min)
## How to use the UI
* Check out this [basic action wiki](https://github.com/Nhogs/popoto/wiki/Basic-action)## Technical sidenotes
### Architecture
#### Browse kafka topics:
* Kafka logs are not mounted
* While collecting new data, check http://localhost:9000/#### Manage Neo4j data:
* Data mounted to /neo4j_data_loader/neo4j_data
* Open Neo4j browser: http://localhost:7474/
* Login with user: neo4j password: password#### Run tests:
* `docker-compose -f docker-compose-tests.yml up`#### Run keywords api update:
* Delete old data saved in `keywords_api/redis_data`
* Run: `docker-compose -f docker-compose-keywords-update.yml up`