https://github.com/milkcat0904/2017-action-recognition-papers
近期要读的2017年顶会的几篇行为识别论文
https://github.com/milkcat0904/2017-action-recognition-papers
action-recognition cvpr-2017 iccv-2017 nips-2017 papers
Last synced: 7 months ago
JSON representation
近期要读的2017年顶会的几篇行为识别论文
- Host: GitHub
- URL: https://github.com/milkcat0904/2017-action-recognition-papers
- Owner: milkcat0904
- Created: 2018-01-08T08:58:41.000Z (almost 8 years ago)
- Default Branch: master
- Last Pushed: 2018-01-08T09:12:39.000Z (almost 8 years ago)
- Last Synced: 2025-01-22T12:30:51.546Z (9 months ago)
- Topics: action-recognition, cvpr-2017, iccv-2017, nips-2017, papers
- Size: 5.86 KB
- Stars: 1
- Watchers: 1
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# 2017-action-recognition-papers
近期要读的2017年顶会的几篇行为识别论文1.Compressed Video Action Recognition
-Wu C Y, Zaheer M, Hu H, et al. Compressed Video Action Recognition[J].
arXiv preprint arXiv:1712.00636, 2017.* 压缩视频,去除冗余信息
2.What Actions are Needed for Understanding Human Actions in Videos?
-Sigurdsson G A, Russakovsky O, Gupta A. What Actions are Needed for Understanding Human Actions in Videos?[J].
arXiv preprint arXiv:1708.02696, 2017.(ICCV2017)* 在charades数据集上,测试了几种传统方法的效果
3.Hollywood in Homes: Crowdsourcing Data Collection for Activity Understanding
-Sigurdsson G A, Varol G, Wang X, et al. Hollywood in homes: Crowdsourcing data collection for activity understanding[C]//European Conference on Computer Vision.
Springer International Publishing, 2016: 510-526.(ECCV2016)* 提出了charades数据集
4.Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
-Carreira J, Zisserman A. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset[J].
arXiv preprint arXiv:1705.07750, 2017.(CVPR2017)* 提出了I3D模型,2017年在ucf101,hmdb51两个数据集达到了state of the art 的结果:80.7% on HMDB-51 and 98.0% on UCF-101
5.Attentional Pooling for Action Recognition
-Girdhar R, Ramanan D. Attentional pooling for action recognition[C]
//Advances in Neural Information Processing Systems. 2017: 33-44.(NIPS2017)* 结合注意力系统的行为识别模型
6.Learning Spatio-Temporal Features with 3D Residual Networks for Action Recognition
-Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?
-Hara K, Kataoka H, Satoh Y. Learning spatio-temporal features with 3D residual networks for action recognition[C]
//Proceedings of the ICCV Workshop on Action, Gesture, and Emotion Recognition. 2017, 2(3): 4.(ICCV2017)
Hara K, Kataoka H, Satoh Y. Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?[J].
arXiv preprint arXiv:1711.09577, 2017.* 3d-resnet 模型
7.ActionVLAD: Learning spatio-temporal aggregation for action classification
-Girdhar R, Ramanan D, Gupta A, et al. ActionVLAD: Learning spatio-temporal aggregation for action classification[J].
arXiv preprint arXiv:1704.02895, 2017.(CVPR2017)* 将VLAD与action相结合
8.Asynchronous Temporal Fields for Action Recognition
-Sigurdsson G A, Divvala S, Farhadi A, et al. Asynchronous Temporal Fields for Action Recognition[J].
arXiv preprint arXiv:1612.06371, 2016.* 在charades数据集上的行为识别CRF模型