An open API service indexing awesome lists of open source software.

https://github.com/milkcat0904/temporal-segment-network-pytorch

tsn model for action recognition on pytorch
https://github.com/milkcat0904/temporal-segment-network-pytorch

action-recognition python-3-6 pytorch temporal-segment-networks

Last synced: 17 days ago
JSON representation

tsn model for action recognition on pytorch

Awesome Lists containing this project

README

        

# Temporal Segment Networks
tsn model for action recognition on pytorch

1.编译环境 Build
=

build opencv 2.4.13 和 dense_flow 环境

$ bash build_all.sh

终端输出"All tools built. Happy experimenting!" 表示build成功

2.下载数据集 Download dataset
=
实验数据集采用UCF-101,HMDB51
* [ucf101][UCF101]
* [hmdb51][HMDB51]

3.提取光流 Extract optical flow
=
$ bash scripts/extract_optical_flow.sh DATASET_PATH OUT_PATH NUMBER_OF_WORKER

DATASET_PATH : 数据集的地址

OUT_PATH :生成光流图的地址

NUMBER_OF_WORKER :工作的显卡数量,一般设置为2

一个频频的光流图和frame和放在同一个文件夹下

4.提取warped光流图 Etract warped flow
=

* 将`tools/build_of.py`的第89行`--flow_type`的默认值改为`warped_tv11`:

```python
parser.add_argument("--flow_type", type=str, default='warped_tvl1', choices=['tvl1', 'warp_tvl1'])
```

* $ bash scripts/extract_optical_flow.sh DATASET_PATH OUT_PATH NUMBER_OF_WORKER

5.生成标签 Label
=
* ucf101数据集标签:

$ bash scripts/build_file_list.sh ucf101 FRAME_PATH

* hmdb51数据集标签:

$ bash scripts/build_file_list.sh hmdb51 FRAME_PATH

FRAME_PATH:光流图(frame)的位置

6.训练(Inception-BN) Training
=
* ucf101
* rgb模型

* flow模型

* rgb-diff模型

* warped flow模型

* hmdb51
* rgb模型

$ python main.py hmdb51 RGB

--arch BNInception --num_segments 3

--gd 20 --lr 0.001 --lr_steps 30 60 --epochs 80

-b 128 -j 8 --dropout 0.8

--snapshot_pref ucf101_bninception_

--gpus 0 1

* flow模型

* rgb-diff模型

* warped flow模型

[ucf101]:http://crcv.ucf.edu/data/UCF101.php
[hmdb51]:http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/