An open API service indexing awesome lists of open source software.

https://github.com/mindspore-courses/deep-tutorials-for-mindspore


https://github.com/mindspore-courses/deep-tutorials-for-mindspore

mindspore tutorial

Last synced: 25 days ago
JSON representation

Awesome Lists containing this project

README

        

# Deep-Tutorials-for-MindSpore

The code of this repository is referenced to [Deep-Tutorial-for-PyTorch](https://github.com/sgrvinod/Deep-Tutorials-for-PyTorch)

---

These tutorials is the implementation of some typical papers. Below is the code directories and their corresponding papers.

Tutorial | Paper
:---: | :---:
Image Captioning | [_Show, Attend, and Tell_](https://arxiv.org/abs/1502.03044)
Sequence Labeling | [_Empower Sequence Labeling with Task-Aware Neural Language Model_](https://arxiv.org/abs/1709.04109)
Object Detection | [_SSD: Single Shot MultiBox Detector_](https://arxiv.org/abs/1512.02325)
Text Classification | [_Hierarchical Attention Networks for Document Classification_](https://www.semanticscholar.org/paper/Hierarchical-Attention-Networks-for-Document-Yang-Yang/1967ad3ac8a598adc6929e9e6b9682734f789427)
Super-Resolution | [_Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network_](https://arxiv.org/abs/1609.04802)
Machine Translation | [_Attention Is All You Need_](https://arxiv.org/abs/1706.03762)

---

Take ImageCaptioning as an example to introduce the file dictionary structure, the others are similar.
```
.
|--ImageCaptioning
| |--create_input_files.py // Process source data files
| |--utils.py // Utility module
| |--datasets.py // Create data source for GeneratorDataset
| |--models.py // Model file
| |--train.py // Train the model
| |--eval.py // Evaluate the model
| |--caption.py // Caption the input image
```