Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/minggnim/nlp-models

A repository for training transformer based models
https://github.com/minggnim/nlp-models

chatbot chatbots ctransformers deeplearning falcon fine-tuning gpt-2 langchain llama2 llms multi-label-classification multi-task-learning nlp pytorch qdrant-vector-database transformers

Last synced: 25 days ago
JSON representation

A repository for training transformer based models

Awesome Lists containing this project

README

        

![PyPI - Package Version](https://img.shields.io/pypi/v/nlp-models?logo=pypi&style=flat&color=blue)
MIT License
[![PyPI pyversions](https://img.shields.io/pypi/pyversions/nlp-models.svg)](https://pypi.python.org/pypi/nlp-models/)
[![Python package](https://github.com/minggnim/nlp-classification-model/actions/workflows/python-package.yml/badge.svg)](https://github.com/minggnim/nlp-classification-model/actions/workflows/python-package.yml)
[![Dependency Review](https://github.com/minggnim/nlp-classification-model/actions/workflows/dependency-review.yml/badge.svg)](https://github.com/minggnim/nlp-classification-model/actions/workflows/dependency-review.yml)

# NLP Models

A repository for building transformer based nlp models

## Installation

### Install from PyPi

```
pip install nlp-models
```

### Install from source

```
git clone [email protected]:minggnim/nlp-models.git
pip install -r requirements
```

## Llama2 Quantization model on consumer CPU

### Run Chat applications on CPU
1. Streamlit UI

```
cd apps
streamlit run chat.py
```

2. Command line

```
llm_app chat -s 'hi there'
```

### Run Q&A application on CPU
1. Steamlit UI

```
cd apps
streamlit run qa.py
```

## Models

1. `bert_classifier`
A wrapper package around BERT-based classification models

- [Training example](https://github.com/minggnim/nlp-models/blob/master/notebooks/01_bert-classification-finetuning/01_a_classification_model_training_example.ipynb)
- [Inference example](https://github.com/minggnim/nlp-models/blob/master/notebooks/01_bert-classification-finetuning/01_b_classification_inference_example.ipynb)
2. `multi_task_model`
An implementation of multi-tasking model built on encoder models

- [Zero-shot multi-task model](https://github.com/minggnim/nlp-models/blob/master/notebooks/02_multi-task-model/02_a_multitask_model_zeroshot_learning.ipynb)
- [Training example](https://github.com/minggnim/nlp-models/blob/master/notebooks/02_multi-task-model/02_b_multitask_model_training_example.ipynb)
- [Inference example](https://github.com/minggnim/nlp-models/blob/master/notebooks/02_multi-task-model/02_c_multitask_model_inference_example.ipynb)
- [Qqrant Vector DB](https://github.com/minggnim/nlp-models/blob/master/notebooks/02_multi-task-model/02_d_qdrant_vector_db.ipynb)
3. `GPT-2`

- [Training GPT-2 model](https://github.com/minggnim/nlp-models/blob/master/notebooks/03_gpt-2-training/gpt-2-training/03_gpt2_training.ipynb)

4. `Falcon 7B`

- [Running Falcon 7b model](https://github.com/minggnim/nlp-models/blob/master/notebooks/04_llms/05_falcon_7b.ipynb)

5. Quantized Llama2 models

- [Run Llama2 chat on CPU](https://github.com/minggnim/nlp-models/blob/master/notebooks/04_llms/06_llama2_langchain_gglm_inference.ipynb)
- [Run Llama2 QA on a custom pdf document on CPU](https://github.com/minggnim/nlp-models/blob/master/notebooks/04_llms/07_llama2_doc_qa.ipynb)