Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mingtaoguo/dcgan_wgan_wgan-gp_lsgan_sngan_rsgan_began_acgan_pggan_tensorflow
Implementation of some different variants of GANs by tensorflow, Train the GAN in Google Cloud Colab, DCGAN, WGAN, WGAN-GP, LSGAN, SNGAN, RSGAN, RaSGAN, BEGAN, ACGAN, PGGAN, pix2pix, BigGAN
https://github.com/mingtaoguo/dcgan_wgan_wgan-gp_lsgan_sngan_rsgan_began_acgan_pggan_tensorflow
acgan began colab dcgan face-generative generative-adversarial-network pggan rasgan rsgan sngan tensorflow wgan wgan-gp
Last synced: 2 days ago
JSON representation
Implementation of some different variants of GANs by tensorflow, Train the GAN in Google Cloud Colab, DCGAN, WGAN, WGAN-GP, LSGAN, SNGAN, RSGAN, RaSGAN, BEGAN, ACGAN, PGGAN, pix2pix, BigGAN
- Host: GitHub
- URL: https://github.com/mingtaoguo/dcgan_wgan_wgan-gp_lsgan_sngan_rsgan_began_acgan_pggan_tensorflow
- Owner: MingtaoGuo
- License: mit
- Created: 2018-07-03T09:31:32.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2022-08-20T01:47:15.000Z (over 2 years ago)
- Last Synced: 2024-08-06T10:12:31.815Z (7 months ago)
- Topics: acgan, began, colab, dcgan, face-generative, generative-adversarial-network, pggan, rasgan, rsgan, sngan, tensorflow, wgan, wgan-gp
- Language: Python
- Homepage:
- Size: 2.13 MB
- Stars: 222
- Watchers: 7
- Forks: 57
- Open Issues: 4
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# DCGAN_LSGAN_WGAN_WGAN-GP_SNGAN_RSGAN_BEGAN_ACGAN_PGGAN_pix2pix_BigGAN
Implementation of some different variants of GANs## Introduction
--------------This code is mainly implement some basic GANs about 'DCGAN', 'WGAN', 'WGAN-GP', 'LSGAN', 'SNGAN', 'RSGAN'&'RaSGAN', 'BEGAN', 'ACGAN', 'PGGAN', 'pix2pix', 'BigGAN'.
More details of these GANs, please see follow papers:
1. DCGAN: [Unsupervised representation learning with deep convolutional generative adversarial networks](https://arxiv.org/pdf/1511.06434.pdf%C3%AF%C2%BC%E2%80%B0)
2. WGAN: [Wasserstein gan](https://arxiv.org/pdf/1701.07875.pdf?__hstc=200028081.1bb630f9cde2cb5f07430159d50a3c91.1524009600081.1524009600082.1524009600083.1&__hssc=200028081.1.1524009600084&__hsfp=1773666937)
3. WGAN-GP: [Improved training of wasserstein gans](https://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans.pdf)
4. LSGAN: [Least Squares Generative Adversarial Networks](http://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_Squares_Generative_ICCV_2017_paper.pdf)
5. SNGAN: [Spectral normalization for generative adversarial networks](https://arxiv.org/pdf/1802.05957.pdf)
6. RSGAN&RaSGAN: [The relativistic discriminator: a key element missing from standard GAN](https://arxiv.org/abs/1807.00734)
7. BEGAN:[BEGAN: Boundary Equilibrium Generative Adversarial Networks](https://arxiv.org/pdf/1703.10717.pdf)
8. ACGAN: [Conditional Image Synthesis With Auxiliary Classifier GANs](https://arxiv.org/pdf/1610.09585.pdf)
9. PGGAN: [Progressive Growing of GANs for Improved Quality, Stability, and Variation](https://arxiv.org/pdf/1710.10196)
10. pix2pix: [Image-to-Image Translation with Conditional Adversarial Networks](https://arxiv.org/pdf/1611.07004.pdf)
11. BigGAN: [Large Scale GAN Training for High Fidelity Natural Image Synthesis](https://arxiv.org/pdf/1809.11096.pdf) [[Code]](https://github.com/MingtaoGuo/BigGAN-tensorflow)
## Attention
If your computer don't have GPU to accelerate the training process, please click [Google Cloud Colab](https://colab.research.google.com/drive/1BKGcw58kOQc4mxxm4VbAJ6BX-DEzZtgE) to train the GANs.
## How to use
Firstly, you should download the data 'facedata.mat' from [Baidu Drive](https://pan.baidu.com/s/12fcKytGOW222bS5BccteYw) or [Google Drive](https://drive.google.com/open?id=1ROGET9rA5WAdU3C8Lfs5mxg5ufLD2uCO), then put the file 'facedata.mat' into the folder 'TrainingSet'.## Requirements
1. python3.5
2. tensorflow1.4.0
3. pillow
4. scipy
5. numpyResults of this code
--------------------
This result is using DCGAN trained about 8000 iterations.Compare LSGAN, WGAN, WGAN-GP, SNGAN, RSGAN of different iteration
-----------------------------------------------------
Convergence of BEGAN
------------------------

ACGAN for face generating
--------------------------
dataset: download address: [Baidu Drive](https://pan.baidu.com/s/1QZ2cra5Yu-2fcQx5dH7WiQ ) password: 5egd|Fixed label, change noise slightly|Fixed noise, change label slightly|
|-|-|
|||PGGAN for face generating
----------------------------
SNGAN for cifar-10
--------------------
|D_loss|G_loss|results|
|-|-|-|
||||Pix2Pix
-----------
Dataset: Google maps download address: [http://efrosgans.eecs.berkeley.edu/pix2pix/datasets/maps.tar.gz](http://efrosgans.eecs.berkeley.edu/pix2pix/datasets/maps.tar.gz)Edges2Shoes download address: [http://efrosgans.eecs.berkeley.edu/pix2pix/datasets/edges2shoes.tar.gz](http://efrosgans.eecs.berkeley.edu/pix2pix/datasets/edges2shoes.tar.gz)
