Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mingxuan-yi/Bridging-the-gap-between-VI-and-WGF
https://github.com/mingxuan-yi/Bridging-the-gap-between-VI-and-WGF
Last synced: 11 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/mingxuan-yi/Bridging-the-gap-between-VI-and-WGF
- Owner: mingxuan-yi
- Created: 2023-05-24T17:09:24.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2023-11-22T19:35:16.000Z (12 months ago)
- Last Synced: 2024-08-01T16:45:46.007Z (3 months ago)
- Language: Jupyter Notebook
- Size: 1.79 MB
- Stars: 3
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
**First, setup the dependencies by**
>pip install -r requirements.txt## 1.The Illustrative Example
see `notebook/The Illustrative Example.ipynb`.## 2. The experiment used GMMs as the variational distribution.
run `python banana.py`. Default parameters: number of mixture components `--num_components=5`, particles per component used for Monte Carlo gradients `--num_sample=30`.## 3. The experiment on Bayesian logistic regressions.
run `python train_Bayesian_logistic.py --dataset='ionos' --num_epoch=20001`. Change `--dataset` to `'heart', 'pima', 'wine'` for different UCI dataset.## 4. To reproduce the experiment in Appendix B.1, run
>python 1d_gmm.py