Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/minhbtrc/langchain-chatbot

This code is an implementation of a chatbot using LLM chat model API and Langchain.
https://github.com/minhbtrc/langchain-chatbot

chatbot gpt-4 gradio langchain langserve langsmith lcel llm mongodb openai personality-chatbot presidio runnable streaming streaming-response

Last synced: about 2 months ago
JSON representation

This code is an implementation of a chatbot using LLM chat model API and Langchain.

Awesome Lists containing this project

README

        

# Chatbot with Langchain, LangSmith.

## Requirement

- Python version >= 3.9. Because langchainhub package require it

## Description

- This is a chatbot implementation with Langchain framework.
- Base LLM: Vertex AI or OpenAI API
- Memory: MongoDB
- UI:
- Gradio
- Langchain UI: [Chat Langchain](https://github.com/langchain-ai/chat-langchain)
- Use it to leverages LangChain's streaming support.
- Prompt versioning and tracing: LangSmith
- User can custom bot's personality by setting bot information like gender, age, ...
- Demo UI:
![Demo UI](/assets/demo_ui.png)

### PII for chatbot

- [Data anonymization with Microsoft Presidio](https://python.langchain.com/docs/guides/privacy/presidio_data_anonymization/)
- To protect personally identifiable information (PII), we add `PresidioAnonymizer` to my bot to replace PIIs before
pass to LLM api. View code in [Anonymizer](//utils/anonymizer.py)
- Steps when using it:
- User message after anonymize:

![anonymized message](/assets/anonymized_output.png)

- Anonymized prompt before input to LLM:

![anonymized_prompt](/assets/anonymized_prompt.png)

- De-anonymized response to user after LLM call:

![de-anonymized_output.png](/assets/de-anonymized-output.png)

## How to use

- You need Google Cloud credentials to call Vertex API or OPENAI API KEY to call OpenAI API
- You need create MongoDB database and collection to use as Langchain memory

### Setup tracing with Langsmith

- Langsmith docs: [LangSmith](https://docs.smith.langchain.com/)
- Configure environment to connect to LangSmith.
```commandline
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_ENDPOINT="https://api.smith.langchain.com"
export LANGCHAIN_API_KEY=""
export LANGCHAIN_PROJECT="chatbot-with-langchain"
```

### Running

0. Download the models for the languages to use in anonymizer. PII support.
1. `python -m spacy download en_core_web_md`
1. RUN backend
1. Clone repo: `git clone https://github.com/btrcm00/chatbot-with-langchain.git`
2. Add google-cloud-platform credential file to `secure/vertexai.json`
3. `cd chatbot`
4. Install required packages: `pip install -r requirements.txt`
5. Create MongoDB database and config environment variables to connect Mongo.
6. Run: `python app.py`
2. RUN frontend
1. `cd chatbot_frontend`
2. Install packages: `npm i`
3. Start frontend: `npm start dev`