Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/mishushakov/llm-scraper

Turn any webpage into structured data using LLMs
https://github.com/mishushakov/llm-scraper

ai artificial-intelligence browser browser-automation gpt gpt-4 langchain llama llm openai playwright puppeteer scraper

Last synced: 3 days ago
JSON representation

Turn any webpage into structured data using LLMs

Awesome Lists containing this project

README

        

# LLM Scraper

Screenshot 2024-04-20 at 23 11 16

LLM Scraper is a TypeScript library that allows you to extract structured data from **any** webpage using LLMs.

> [!IMPORTANT]
> [Code-generation](#code-generation) is now supported in LLM Scraper.

> [!TIP]
> Under the hood, it uses function calling to convert pages to structured data. You can find more about this approach [here](https://til.simonwillison.net/gpt3/openai-python-functions-data-extraction).

### Features

- Supports **Local (Ollama, GGUF)**, OpenAI, Vercel AI SDK Providers
- Schemas defined with Zod
- Full type-safety with TypeScript
- Based on Playwright framework
- Streaming objects
- **NEW** [Code-generation](#code-generation)
- Supports 4 formatting modes:
- `html` for loading raw HTML
- `markdown` for loading markdown
- `text` for loading extracted text (using [Readability.js](https://github.com/mozilla/readability))
- `image` for loading a screenshot (multi-modal only)

**Make sure to give it a star!**

Screenshot 2024-04-20 at 22 13 32

## Getting started

1. Install the required dependencies from npm:

```
npm i zod playwright llm-scraper
```

2. Initialize your LLM:

**OpenAI**

```
npm i @ai-sdk/openai
```

```js
import { openai } from '@ai-sdk/openai'

const llm = openai.chat('gpt-4o')
```

**Groq**

```
npm i @ai-sdk/openai
```

```js
import { createOpenAI } from '@ai-sdk/openai'
const groq = createOpenAI({
baseURL: 'https://api.groq.com/openai/v1',
apiKey: process.env.GROQ_API_KEY,
})

const llm = groq('llama3-8b-8192')
```

**Ollama**

```
npm i ollama-ai-provider
```

```js
import { ollama } from 'ollama-ai-provider'

const llm = ollama('llama3')
```

**GGUF**

```js
import { LlamaModel } from 'node-llama-cpp'

const llm = new LlamaModel({ modelPath: 'model.gguf' })
```

3. Create a new scraper instance provided with the llm:

```js
import LLMScraper from 'llm-scraper'

const scraper = new LLMScraper(llm)
```

## Example

In this example, we're extracting top stories from HackerNews:

```ts
import { chromium } from 'playwright'
import { z } from 'zod'
import { openai } from '@ai-sdk/openai'
import LLMScraper from 'llm-scraper'

// Launch a browser instance
const browser = await chromium.launch()

// Initialize LLM provider
const llm = openai.chat('gpt-4o')

// Create a new LLMScraper
const scraper = new LLMScraper(llm)

// Open new page
const page = await browser.newPage()
await page.goto('https://news.ycombinator.com')

// Define schema to extract contents into
const schema = z.object({
top: z
.array(
z.object({
title: z.string(),
points: z.number(),
by: z.string(),
commentsURL: z.string(),
})
)
.length(5)
.describe('Top 5 stories on Hacker News'),
})

// Run the scraper
const { data } = await scraper.run(page, schema, {
format: 'html',
})

// Show the result from LLM
console.log(data.top)

await page.close()
await browser.close()
```

## Streaming

Replace your `run` function with `stream` to get a partial object stream (Vercel AI SDK only).

```ts
// Run the scraper in streaming mode
const { stream } = await scraper.stream(page, schema)

// Stream the result from LLM
for await (const data of stream) {
console.log(data.top)
}
```

## Code-generation

Using the `generate` function you can generate re-usable playwright script that scrapes the contents according to a schema.

```ts
// Generate code and run it on the page
const { code } = await scraper.generate(page, schema)
const result = await page.evaluate(code)
const data = schema.parse(result)

// Show the parsed result
console.log(data.news)
```

## Contributing

As an open-source project, we welcome contributions from the community. If you are experiencing any bugs or want to add some improvements, please feel free to open an issue or pull request.