https://github.com/mithaystack/variantdbscan
Variant Density-Based Spatial Clustering of Applications with Noise (VariantDBSCAN)
https://github.com/mithaystack/variantdbscan
Last synced: 2 months ago
JSON representation
Variant Density-Based Spatial Clustering of Applications with Noise (VariantDBSCAN)
- Host: GitHub
- URL: https://github.com/mithaystack/variantdbscan
- Owner: MITHaystack
- Created: 2017-04-24T18:30:59.000Z (about 8 years ago)
- Default Branch: master
- Last Pushed: 2017-11-27T22:30:08.000Z (over 7 years ago)
- Last Synced: 2025-01-05T22:42:20.356Z (4 months ago)
- Language: Cuda
- Homepage:
- Size: 5.98 MB
- Stars: 1
- Watchers: 7
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# VariantDBSCAN
## Maximizing Clustering Throughput
Project lead: Mike Gowanlock
Relevant papers:
* [1] Gowanlock, M., Blair, D. M. & Pankratius, V. (2016) Exploiting Variant-Based Parallelism for Data Mining of Space Weather Phenomena. In Proc. of the 30th IEEE International Parallel & Distributed Processing Symposium (IPDPS 2016). pp. 760-769 DOI: 10.1109/IPDPS.2016.10
[[http://dx.doi.org/10.1109/IPDPS.2016.10 ]](http://dx.doi.org/10.1109/IPDPS.2016.10 )* [2] Gowanlock, M., Blair, D. M., Pankratius, V. Optimizing Parallel Clustering Throughput in Shared Memory. IEEE Transactions on Parallel and Distributed Systems DOI: 10.1109/TPDS.2017.2675421
[[http://dx.doi.org/10.1109/TPDS.2017.2675421]](http://dx.doi.org/10.1109/TPDS.2017.2675421)
Figure: Relative performance gains utilizing all of the optimizations over the sequential implementation on a space weather TEC dataset in [1, 2]. Values over the black line indicate a performance improvement. The red line indicates the performance gain from index optimizations only. See the papers above.
We acknowledge support from NSF ACI-1442997 and NASA AIST14-NNX15AG84G.