Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mitmul/chainer-cifar10
Various CNN models for CIFAR10 with Chainer
https://github.com/mitmul/chainer-cifar10
chainer cifar10 convnet convolutional-neural-networks deep-convolutional-networks deep-learning densenet network-in-network neural-networks residual-networks resnet vgg wide-residual-networks
Last synced: 18 days ago
JSON representation
Various CNN models for CIFAR10 with Chainer
- Host: GitHub
- URL: https://github.com/mitmul/chainer-cifar10
- Owner: mitmul
- Created: 2015-06-09T14:39:43.000Z (over 9 years ago)
- Default Branch: master
- Last Pushed: 2018-12-06T12:35:09.000Z (almost 6 years ago)
- Last Synced: 2024-10-14T12:37:01.593Z (about 1 month ago)
- Topics: chainer, cifar10, convnet, convolutional-neural-networks, deep-convolutional-networks, deep-learning, densenet, network-in-network, neural-networks, residual-networks, resnet, vgg, wide-residual-networks
- Language: Python
- Homepage: http://chainer.org
- Size: 1.05 MB
- Stars: 140
- Watchers: 8
- Forks: 35
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Train various models on CIFAR10 with Chainer
## Requirements
- Python 3.5.1+ (not tested with Python2)
- pip packages:
- chainer>=3.1.0
- chainercv>=0.8.0
- numpy>=1.10.1
- matplotlib>=2.0.0
- scikit-image>=0.13.1
- opencv-python>=3.3.0
- tabulate>=0.8.2## Quick Start
```bash
MPLBACKEND=Agg python train.py
```With full arguments:
```bash
MPLBACKEND=Agg python train.py \
--model_file models/wide_resnet.py \
--model_name WideResNet \
--batchsize 128 \
--training_epoch 500 \
--initial_lr 0.05 \
--lr_decay_rate 0.5 \
--lr_decay_epoch 70 \
--weight_decay 0.0005 \
--random_angle 15.0 \
--pca_sigma 25.5 \
--expand_ratio 1.2 \
--crop_size 28 28 \
--seed 0 \
--gpus 0
```## About data augmentation
It performs various data augmentation using [ChainerCV](https://github.com/chainer/chainercv). Provided operations are:
- Random rotating (using OpenCV or scikit-image)
- Random lighting
- Random LR-flipping
- Random zomming (a.k.a. expansion)
- Random croppingSee the details at `transform` function in `train.py`.
## Exprimental Results
| model_name | val/main/accuracy | epoch | batchsize | crop_size | expand_ratio | pca_sigma | random_angle | weight_decay | initial_lr | lr_decay_rate | lr_decay_epoch |
|:-------------|--------------------:|--------:|------------:|:------------|---------------:|------------:|---------------:|---------------:|-------------:|----------------:|-----------------:|
| LeNet5 | 0.860166 | 500 | 128 | [28, 28] | 1.2 | 25.5 | 15 | 0.0005 | 0.01 | 0.5 | 50 |
| NIN | 0.879351 | 500 | 128 | [28, 28] | 1.2 | 25.5 | 15 | 0.0005 | 0.01 | 0.5 | 100 |
| VGG | 0.934237 | 500 | 128 | [28, 28] | 1.2 | 25.5 | 15 | 0.0005 | 0.05 | 0.5 | 50 |
| ResNet50 | 0.950455 | 500 | 128 | [28, 28] | 1.2 | 25.5 | 15 | 0.0005 | 0.05 | 0.5 | 50 |
| DenseNet | 0.944818 | 500 | 128 | [28, 28] | 1.2 | 25.5 | 15 | 0.0005 | 0.05 | 0.5 | 50 |
| WideResNet | 0.962322 | 500 | 128 | [28, 28] | 1.2 | 25.5 | 15 | 0.0005 | 0.05 | 0.5 | 70 |![](compare.png)