Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mixuala/colab_utils
assorted utils for use with `Colaboratory`
https://github.com/mixuala/colab_utils
Last synced: 7 days ago
JSON representation
assorted utils for use with `Colaboratory`
- Host: GitHub
- URL: https://github.com/mixuala/colab_utils
- Owner: mixuala
- Created: 2018-02-02T01:38:03.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2020-02-28T09:37:53.000Z (over 4 years ago)
- Last Synced: 2024-08-01T15:30:42.312Z (3 months ago)
- Language: Python
- Size: 64.5 KB
- Stars: 324
- Watchers: 15
- Forks: 54
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# `colab_utils`
This repository ontains useful scripts for adding common services to non-persistent `colaboratory` VM sessionssee: https://colab.research.google.com/notebook
## Tensorboard
create a public `tensorboard` URL using secure introspective tunnels via `ngrok`When training on `colaboratory` VMs it it often useful to monitor the session via
`tensorboard`. This script helps you launches tensorboard on the `colaboratory` VM and
uses `ngrok` to create a secure introspective tunnel to access tensorboard via public URL.```
************************************
* A simple working script *
************************************import os
import colab_utils.tboard# set paths
ROOT = %pwd
LOG_DIR = os.path.join(ROOT, 'log')# will install `ngrok`, if necessary
# will create `log_dir` if path does not exist
colab_utils.tboard.launch_tensorboard( bin_dir=ROOT, log_dir=LOG_DIR )```
### `launch_tensorboard( bin_dir=ROOT, log_dir=LOG_DIR )`
launch tensorboard on `colaboratory` VM and open a tunnel for access by public URL. Automatically installs `ngrok`. if necessary.```
tboard.launch_tensorboard( bin_dir=ROOT, log_dir=LOG_DIR )
```### `install_ngrok( bin_dir=ROOT )`
install `ngrok` package, if necessary```
tboard.install_ngrok( bin_dir=ROOT, log_dir=LOG_DIR )
```## Google Cloud
Access Google Cloud from `colaboratory` VM and save/restore checkpoints to cloud storage**Note:** these methods currently use ipython `magic` commands and therefore cannot be loaded from a module at this time. For now, you can copy/paste the entire script to a `colaboratory ` cell to run.
Long-running training sessions on `colaboratory` VMs are at risk of reset after 90 mins of
inactivity or shutdown after 12hrs of training. This script allows you to save/restore
checkpoints to Google Cloud Storage to avoid losing your results.You can also mount a GCS bucket on the local filesystem using the `gcsfuse` package for syncing
checkpoints automatically to the cloud```
************************************
* A simple working script *
************************************import os
import colab_utils.gcloud# authorize access to Google Cloud SDK from `colaboratory` VM
project_name = "my-project-123"
colab_utils.gcloud.gcloud_auth(project_name)
# colab_utils.gcloud.config_project(project_name)# set paths
ROOT = %pwd
LOG_DIR = os.path.join(ROOT, 'log')
TRAIN_LOG = os.path.join(LOG_DIR, 'training-run-1')# save latest checkpoint as a zipfile to a GCS bucket `gs://my-checkpoints/`
# zipfile name = "{}.{}.zip".format() os.path.basename(TRAIN_LOG), global_step)
# e.g. gs://my-checkpoints/training-run-1.1000.zip"
bucket_name = "my-checkpoints"
colab_utils.gcloud.save_to_bucket(TRAIN_LOG, bucket_name, project_name, save_events=True, force=False)# restore a zipfile from GCS bucket to a local directory, usually in
# tensorboard `log_dir`
CHECKPOINTS = os.path.join(LOG_DIR, 'training-run-2')
zipfile = os.path.basename(TRAIN_LOG) # training-run-1
colab_utils.gcloud.load_from_bucket("training-run-1.1000.zip", bucket_name, CHECKPOINTS )# mount gcs bucket to local fs using the `gcsfuse` package, installs automatically
bucket = "my-bucket"
local_path = colab_utils.gcloud.gcsfuse(bucket=bucket)
# gcsfuse(): Using mount point: /tmp/gcs-bucket/my-bucket!ls -l local_path
!umount local_path```
## GCS Authorization
### `auth(project_id)`
authorize access to Google Cloud SDK from `colaboratory` VM and set default project
```
colab_utils.gcloud.gcloud_auth(project_name)
```## Save/Restore checkpoints to Google Cloud Storage
Save and restore checkpoints and events to a zipfile in a GCS bucket### `save_to_bucket(train_dir, bucket)`
zip the latest checkpoint files from train_dir and save to GCS bucket
```
colab_utils.gcloud.save_to_bucket(train_dir, bucket,
step=None,
save_events=False,
force=False)
```### `load_from_bucket(zip_filename, bucket, train_dir)`
download and unzip checkpoint files from GCS bucket, save to train_dir
```
colab_utils.gcloud.load_from_bucket(zip_filename, bucket, train_dir ):
```## Archiving to Google Cloud with Hooks and Callbacks
### `SaverWithCallback`
adds a callback to the `tf.train.Saver.save()` method. This can be used to archive checkpoint and tensorboard event files to a GCS bucket```
import os, re
import colab_utils.gcloud# define callback
def save_checkpoint_to_bucket( sess, save_path, **kwargs ):
# be sure to call `colab_utils.gcloud.gcloud_auth(project_id)` beforehand
bucket = "my-bucket"
project_name = "my-project-123"# e.g. model_checkpoint_path = /tensorflow/log/run1/model.ckpt-14
train_log, checkpoint = os.path.split(kwargs['checkpoint_path'])
bucket_path = colab_utils.gcloud.save_to_bucket(train_log, bucket, project_name,
step=kwargs['checkpoint_step'],
save_events=True)
return bucket_path# create subclassed `tf.train.Saver()`
saver = SaverWithCallback(save_checkpoint_to_bucket)
ckpt_interval = 3600 # save checkpoint every 1 hour and save to buckettf.reset_default_graph()
with tf.Graph().as_default():
# ...
checkpoint_saver = colab_utils.gcloud.SaverWithCallback(save_checkpoint_to_bucket)
loss = slim.learning.train(train_op, train_log,
save_interval_secs=ckpt_interval,
saver=checkpoint_saver,
)
```### Class `GcsArchiveHook`
Use `GcsArchiveHook` as an implementation of `tf.train.SessionRunHook` to archive checkpoint and
events as a `tar.gz` archive to a Google Cloud Storage bucket. Works together with `model_fn()` and the`tf.Estimator` API
```
def model_fn(features, labels, mode, params):
# params["start"] = time.time()
# params["log_dir"]=TRAIN_LOG
[...]loss = [...]
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = [...]#
# add training_hooks
#
bucket = "my-bucket"
project_name = "my-project-123"
archiveHook = GcsArchiveHook(every_n_secs=3600,
start = params["start"],
log=params["log_dir"],
bucket=bucket,
project=project_name)
return tf.estimator.EstimatorSpec(mode=mode, loss=loss,
train_op=train_op,
training_hooks=[archiveHook],
)```
## Mount a Google Cloud Storage bucket to the local filesystem
use `gcsfuse` to automatically sync to GCS> **Note:** While the lastest checkpoints can be restored, tensorboard event files are sometimes lost (size 0) if the VM resets upon hitting the 12 hour limit. It is generally better to use `SaverWithCallback()` to archive checkpoint and event files to a GCS bucket before the VM resets.
### `gcsfuse(bucket=None)`
```
local_path = gcsfuse(bucket=None, gcs_class="regional", gcs_location="asia-east1", project_id=None)
```