An open API service indexing awesome lists of open source software.

https://github.com/mizuhoaoki/gaussian_process

gaussian process examples
https://github.com/mizuhoaoki/gaussian_process

bayesian-optimization gaussian-processes path-following pid pid-control python

Last synced: 3 months ago
JSON representation

gaussian process examples

Awesome Lists containing this project

README

          

[![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![Rye](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/rye/main/artwork/badge.json)](https://rye.astral.sh)

# Gaussian Process

## Dependency

- [python](https://www.python.org/)
- version 3.10 or higher is recommended.

- [rye](https://rye.astral.sh/)
- seting up python environment easily and safely.
- only `numpy`, `matplotlib`, `notebook` are needed to run all scripts in this repository.

## Setup
```sh
git clone https://github.com/MizuhoAOKI/gaussian_process.git
cd gaussian_process
rye sync
```

## Usage

### Gaussian Process Regression

```sh
cd gaussian_process
rye run jupyter notebook notebooks/gp_regression_1d.ipynb
```

gaussian process regression (1 dim)

```sh
cd gaussian_process
rye run jupyter notebook notebooks/gp_regression_2d.ipynb
```
gaussian process regression (2 dim)

### Bayesian Optimization

```sh
cd gaussian_process
rye run jupyter notebook notebooks/bayesian_optimization_1d.ipynb
```

https://github.com/MizuhoAOKI/gaussian_process/assets/63337525/36b2d534-8d9f-4a5e-b26d-dc41e0032590

```sh
cd gaussian_process
rye run jupyter notebook notebooks/bayesian_optimization_2d.ipynb
```

https://github.com/user-attachments/assets/6e01d71f-f5d6-4ca8-90a3-6792bac1da56

```sh
cd gaussian_process
rye run jupyter notebook notebooks/bayesian_optimization_path_tracking.ipynb
```

https://github.com/user-attachments/assets/6d2cbb48-3d44-46c5-ba76-3fc29aa1ca1d

## References

Great textbooks to learn Gaussian Process:

- [持橋大地, 大羽成征 (2019). ガウス過程と機械学習. 講談社(MLP機械学習プロフェッショナルシリーズ)](https://www.kodansha.co.jp/book/products/0000147677)
- [Rasmussen, C. E., & Williams, C. K. I. (2006). *Gaussian Processes for Machine Learning*. MIT Press](https://gaussianprocess.org/gpml/)
- [Bishop, C. M. (2006). *Pattern Recognition and Machine Learning*. Springer (PDF via Microsoft Research)](https://www.microsoft.com/en-us/research/wp-content/uploads/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf)