https://github.com/mizuhoaoki/gaussian_process
gaussian process examples
https://github.com/mizuhoaoki/gaussian_process
bayesian-optimization gaussian-processes path-following pid pid-control python
Last synced: 3 months ago
JSON representation
gaussian process examples
- Host: GitHub
- URL: https://github.com/mizuhoaoki/gaussian_process
- Owner: MizuhoAOKI
- License: mit
- Created: 2024-05-29T14:19:39.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2025-07-01T05:51:33.000Z (6 months ago)
- Last Synced: 2025-07-01T06:32:24.398Z (6 months ago)
- Topics: bayesian-optimization, gaussian-processes, path-following, pid, pid-control, python
- Language: Jupyter Notebook
- Homepage:
- Size: 4.77 MB
- Stars: 24
- Watchers: 1
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE.txt
Awesome Lists containing this project
README
[](https://opensource.org/licenses/MIT)
[](https://rye.astral.sh)
# Gaussian Process
## Dependency
- [python](https://www.python.org/)
- version 3.10 or higher is recommended.
- [rye](https://rye.astral.sh/)
- seting up python environment easily and safely.
- only `numpy`, `matplotlib`, `notebook` are needed to run all scripts in this repository.
## Setup
```sh
git clone https://github.com/MizuhoAOKI/gaussian_process.git
cd gaussian_process
rye sync
```
## Usage
### Gaussian Process Regression
```sh
cd gaussian_process
rye run jupyter notebook notebooks/gp_regression_1d.ipynb
```

```sh
cd gaussian_process
rye run jupyter notebook notebooks/gp_regression_2d.ipynb
```

### Bayesian Optimization
```sh
cd gaussian_process
rye run jupyter notebook notebooks/bayesian_optimization_1d.ipynb
```
https://github.com/MizuhoAOKI/gaussian_process/assets/63337525/36b2d534-8d9f-4a5e-b26d-dc41e0032590
```sh
cd gaussian_process
rye run jupyter notebook notebooks/bayesian_optimization_2d.ipynb
```
https://github.com/user-attachments/assets/6e01d71f-f5d6-4ca8-90a3-6792bac1da56
```sh
cd gaussian_process
rye run jupyter notebook notebooks/bayesian_optimization_path_tracking.ipynb
```
https://github.com/user-attachments/assets/6d2cbb48-3d44-46c5-ba76-3fc29aa1ca1d
## References
Great textbooks to learn Gaussian Process:
- [持橋大地, 大羽成征 (2019). ガウス過程と機械学習. 講談社(MLP機械学習プロフェッショナルシリーズ)](https://www.kodansha.co.jp/book/products/0000147677)
- [Rasmussen, C. E., & Williams, C. K. I. (2006). *Gaussian Processes for Machine Learning*. MIT Press](https://gaussianprocess.org/gpml/)
- [Bishop, C. M. (2006). *Pattern Recognition and Machine Learning*. Springer (PDF via Microsoft Research)](https://www.microsoft.com/en-us/research/wp-content/uploads/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf)