Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mkdirer/depression-data-analysis
This project analyzes a Kaggle depression dataset using data preprocessing, clustering, classification, and outlier detection techniques. Python libraries like pandas, numpy, matplotlib, seaborn, and scikit-learn are used to extract insights.
https://github.com/mkdirer/depression-data-analysis
classification clustering matplotlib numpy pandas scikit-learn seaborn vizualization
Last synced: 3 months ago
JSON representation
This project analyzes a Kaggle depression dataset using data preprocessing, clustering, classification, and outlier detection techniques. Python libraries like pandas, numpy, matplotlib, seaborn, and scikit-learn are used to extract insights.
- Host: GitHub
- URL: https://github.com/mkdirer/depression-data-analysis
- Owner: mkdirer
- License: mit
- Created: 2024-08-10T22:41:09.000Z (5 months ago)
- Default Branch: main
- Last Pushed: 2024-08-10T22:58:00.000Z (5 months ago)
- Last Synced: 2024-10-10T08:01:50.420Z (3 months ago)
- Topics: classification, clustering, matplotlib, numpy, pandas, scikit-learn, seaborn, vizualization
- Language: Jupyter Notebook
- Homepage:
- Size: 7.41 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Depression Data Analysis
## Project Description
This project aims to analyze data related to depression, available on the Kaggle platform. The analysis involves data manipulation, visualization, and basic modeling, data preprocessing, outlier detection, clustering, and classification using Python tools.
## Contents
The project includes the following components:
- **Dataset**: The data used in this project is sourced from [this Kaggle dataset](https://www.kaggle.com/datasets/diegobabativa/depression).
- **Jupyter Notebook**: The file `ED_projekt_1.ipynb` contains the source code.
- **Libraries**: The project utilizes the following Python libraries:
- `pandas` for data manipulation,
- `numpy` for mathematical computations,
- `matplotlib` and `seaborn` for data visualization,
- `scikit-learn` for modeling.