Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mkocabas/pose-residual-network
Code for the Pose Residual Network introduced in 'MultiPoseNet: Fast Multi-Person Pose Estimation using Pose Residual Network (ECCV 2018)' paper
https://github.com/mkocabas/pose-residual-network
deep-learning deep-neural-networks eccv eccv-2018 keras pose-estimation python tensorflow
Last synced: 6 days ago
JSON representation
Code for the Pose Residual Network introduced in 'MultiPoseNet: Fast Multi-Person Pose Estimation using Pose Residual Network (ECCV 2018)' paper
- Host: GitHub
- URL: https://github.com/mkocabas/pose-residual-network
- Owner: mkocabas
- Created: 2018-07-11T08:12:02.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2018-09-14T09:41:29.000Z (over 6 years ago)
- Last Synced: 2025-01-07T23:13:00.296Z (13 days ago)
- Topics: deep-learning, deep-neural-networks, eccv, eccv-2018, keras, pose-estimation, python, tensorflow
- Language: Python
- Homepage: https://arxiv.org/abs/1807.04067
- Size: 21.5 KB
- Stars: 346
- Watchers: 22
- Forks: 92
- Open Issues: 12
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Pose Residual Network
This repository contains a Keras implementation of the Pose Residual Network (PRN) presented in our ECCV 2018 paper:
Muhammed Kocabas, Salih Karagoz, Emre Akbas. MultiPoseNet: Fast Multi-Person Pose Estimation using Pose Residual Network. In ECCV, 2018. [Arxiv](https://arxiv.org/abs/1807.04067)
PRN is described in Section 3.2 of the paper.
## Getting Started
We have tested our method on [COCO Dataset](http://cocodataset.org)### Prerequisites
```
python
tensorflow
keras
numpy
tqdm
pycocotools
progress
scikit-image
```### Installing
1. Clone this repository:
`git clone https://github.com/mkocabas/pose-residual-network.git`2. Install [Tensorflow](https://www.tensorflow.org/install/).
3. ```pip install -r src/requirements.txt```
4. To download COCO dataset train2017 and val2017 annotations run: `bash data/coco.sh`. (data size: ~240Mb)
## Training
`python main.py`
For more options take a look at `opt.py`
## Results
Results on COCO val2017 Ground Truth data.```
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.894
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.971
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.912
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.875
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.918
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.909
Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.972
Average Recall (AR) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.928
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.896
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.947
```## License
## Other Implementations
[Pytorch Version](https://github.com/salihkaragoz/pose-residual-network-pytorch)
## Citation
If you find this code useful for your research, please consider citing our paper:
```
@Inproceedings{kocabas18prn,
Title = {Multi{P}ose{N}et: Fast Multi-Person Pose Estimation using Pose Residual Network},
Author = {Kocabas, Muhammed and Karagoz, Salih and Akbas, Emre},
Booktitle = {European Conference on Computer Vision (ECCV)},
Year = {2018}
}
```