Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/mlpnlp/mlpnlp-nmt

This is a sample code of "LSTM encoder-decoder with attention mechanism" mainly for understanding a recently developed machine translation framework based on deep neural networks.
https://github.com/mlpnlp/mlpnlp-nmt

Last synced: 9 days ago
JSON representation

This is a sample code of "LSTM encoder-decoder with attention mechanism" mainly for understanding a recently developed machine translation framework based on deep neural networks.

Awesome Lists containing this project

README

        

# mlpnlp-nmt
This is a sample code of "LSTM encoder-decoder with attention mechanism" mainly for understanding a recently developed machine translation framework based on deep neural networks.

# How to use
Please see the following example.

## Requirement
* Assumes "chainer" installed!! for installation, see https://chainer.org

## Data
* Sample data from WMT16 page http://www.statmt.org/wmt16/translation-task.html

## Preprocess (vocab file) examples

```bash
for f in sample_data/newstest2012-4p.{en,de} ;do \
echo ${f} ; \
cat ${f} | sed '/^$/d' | perl -pe 's/^\s+//; s/\s+\n$/\n/; s/ +/\n/g' | \
LC_ALL=C sort | LC_ALL=C uniq -c | LC_ALL=C sort -r -g -k1 | \
perl -pe 's/^\s+//; ($a1,$a2)=split;
if( $a1 >= 3 ){ $_="$a2\t$a1\n" }else{ $_="" } ' > ${f}.vocab_t3_tab ;\
done
```

or

```bash
T=3; for f in sample_data/newstest2012-4p.{en,de} ;do \
echo ${f} ; \
cat ${f} | python count_freq.py ${T} > ${f}.vocab_t${T}_tab ; \
done
```

## Training
Note that please run with ``GPU=-1`` option for no GPU environment

```bash
SLAN=de; TLAN=en; GPU=0; EP=13 ; \
MODEL=filename_of_sample_model.model ; \
python -u ./LSTMEncDecAttn.py -V2 \
-T train \
--gpu-enc ${GPU} \
--gpu-dec ${GPU} \
--enc-vocab-file sample_data/newstest2012-4p.${SLAN}.vocab_t3_tab \
--dec-vocab-file sample_data/newstest2012-4p.${TLAN}.vocab_t3_tab \
--enc-data-file sample_data/newstest2012-4p.${SLAN} \
--dec-data-file sample_data/newstest2012-4p.${TLAN} \
--enc-devel-data-file sample_data/newstest2015.h100.${SLAN} \
--dec-devel-data-file sample_data/newstest2015.h100.${TLAN} \
-D 512 \
-H 512 \
-N 2 \
--optimizer SGD \
--lrate 1.0 \
--batch-size 32 \
--out-each 0 \
--epoch ${EP} \
--eval-accuracy 0 \
--dropout-rate 0.3 \
--attention-mode 1 \
--gradient-clipping 5 \
--initializer-scale 0.1 \
--initializer-type uniform \
--merge-encoder-fwbw 0 \
--use-encoder-bos-eos 0 \
--use-decoder-inputfeed 1 \
-O ${MODEL} \
```

## Evaluation

```bash
SLAN=de; GPU=0; EP=13 ; BEAM=5 ; \
MODEL=filename_of_sample_model.model ; \
python -u ./LSTMEncDecAttn.py \
-T test \
--gpu-enc ${GPU} \
--gpu-dec ${GPU} \
--enc-data-file sample_data/newstest2015.h101-200.${SLAN} \
--init-model ${MODEL}.epoch${EP} \
--setting ${MODEL}.setting \
--beam-size ${BEAM} \
--max-length 150 \
> ${MODEL}.epoch${EP}.decode_MAX${MAXLEN}_BEAM${BEAM}.txt
```