Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/mlr-org/mlr3db

Data Backends to let mlr3 work transparently with (remote) data bases
https://github.com/mlr-org/mlr3db

bigquery data-backend database duckdb machine-learning mariadb mlr3 mysql odbc postgresql r r-package spark sqlite

Last synced: 25 days ago
JSON representation

Data Backends to let mlr3 work transparently with (remote) data bases

Awesome Lists containing this project

README

        

---
output: github_document
---

```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
lgr::get_logger("mlr3")$set_threshold("warn")
```

# mlr3db

[![r-cmd-check](https://github.com/mlr-org/mlr3db/actions/workflows/r-cmd-check.yml/badge.svg)](https://github.com/mlr-org/mlr3db/actions/workflows/r-cmd-check.yml)
[![CRAN Status](https://www.r-pkg.org/badges/version-ago/mlr3db)](https://cran.r-project.org/package=mlr3db)
[![StackOverflow](https://img.shields.io/badge/stackoverflow-mlr3-orange.svg)](https://stackoverflow.com/questions/tagged/mlr3)
[![Mattermost](https://img.shields.io/badge/chat-mattermost-orange.svg)](https://lmmisld-lmu-stats-slds.srv.mwn.de/mlr_invite/)

Package website: [release](https://mlr3db.mlr-org.com/) | [dev](https://mlr3db.mlr-org.com/dev/)

Extends the [mlr3](https://mlr3.mlr-org.com/) package with a DataBackend to transparently work with databases.
Two additional backends are currently implemented:

* `DataBackendDplyr`: Relies internally on the abstraction of [dplyr](https://dplyr.tidyverse.org/) and [dbplyr](https://dbplyr.tidyverse.org/).
This allows working on a broad range of DBMS, such as SQLite, MySQL, MariaDB, or PostgreSQL.
* `DataBackendDuckDB`: Connector to [duckdb](https://cran.r-project.org/package=duckdb).
This includes support for Parquet files (see example below).

To construct the backends, you have to establish a connection to the DBMS yourself with the [DBI](https://cran.r-project.org/package=DBI) package.
For the serverless SQLite and DuckDB, we provide the converters `as_sqlite_backend()` and `as_duckdb_backend()`.

## Installation

You can install the released version of mlr3db from [CRAN](https://CRAN.R-project.org) with:

```{r, eval = FALSE}
install.packages("mlr3db")
```

And the development version from [GitHub](https://github.com/) with:

```{r, eval = FALSE}
# install.packages("devtools")
devtools::install_github("mlr-org/mlr3db")
```

## Example

### DataBackendDplyr

```{r}
library("mlr3db")

# Create a classification task:
task = tsk("spam")

# Convert the task backend from a in-memory backend (DataBackendDataTable)
# to an out-of-memory SQLite backend via DataBackendDplyr.
# A temporary directory is used here to store the database files.
task$backend = as_sqlite_backend(task$backend, path = tempfile())

# Resample a classification tree using a 3-fold CV.
# The requested data will be queried and fetched from the database in the background.
resample(task, lrn("classif.rpart"), rsmp("cv", folds = 3))
```

### DataBackendDuckDB

```{r}
library("mlr3db")

# Get an example parquet file from the package install directory:
# spam dataset (tsk("spam")) stored as parquet file
file = system.file(file.path("extdata", "spam.parquet"), package = "mlr3db")

# Create a backend on the file
backend = as_duckdb_backend(file)

# Construct classification task on the constructed backend
task = as_task_classif(backend, target = "type")

# Resample a classification tree using a 3-fold CV.
# The requested data will be queried and fetched from the database in the background.
resample(task, lrn("classif.rpart"), rsmp("cv", folds = 3))
```