https://github.com/mlr-org/mlr3db
Data Backends to let mlr3 work transparently with (remote) data bases
https://github.com/mlr-org/mlr3db
bigquery data-backend database duckdb machine-learning mariadb mlr3 mysql odbc postgresql r r-package spark sqlite
Last synced: 3 months ago
JSON representation
Data Backends to let mlr3 work transparently with (remote) data bases
- Host: GitHub
- URL: https://github.com/mlr-org/mlr3db
- Owner: mlr-org
- License: lgpl-3.0
- Created: 2018-10-01T10:03:12.000Z (almost 7 years ago)
- Default Branch: main
- Last Pushed: 2025-04-09T09:40:12.000Z (3 months ago)
- Last Synced: 2025-04-09T10:39:50.549Z (3 months ago)
- Topics: bigquery, data-backend, database, duckdb, machine-learning, mariadb, mlr3, mysql, odbc, postgresql, r, r-package, spark, sqlite
- Language: R
- Homepage: https://mlr3db.mlr-org.com
- Size: 2.91 MB
- Stars: 21
- Watchers: 14
- Forks: 0
- Open Issues: 6
-
Metadata Files:
- Readme: README.Rmd
- Changelog: NEWS.md
- License: LICENSE
Awesome Lists containing this project
README
---
output: github_document
---```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
lgr::get_logger("mlr3")$set_threshold("warn")
```# mlr3db
[](https://github.com/mlr-org/mlr3db/actions/workflows/r-cmd-check.yml)
[](https://cran.r-project.org/package=mlr3db)
[](https://stackoverflow.com/questions/tagged/mlr3)
[](https://lmmisld-lmu-stats-slds.srv.mwn.de/mlr_invite/)Package website: [release](https://mlr3db.mlr-org.com/) | [dev](https://mlr3db.mlr-org.com/dev/)
Extends the [mlr3](https://mlr3.mlr-org.com/) package with a DataBackend to transparently work with databases.
Two additional backends are currently implemented:* `DataBackendDplyr`: Relies internally on the abstraction of [dplyr](https://dplyr.tidyverse.org/) and [dbplyr](https://dbplyr.tidyverse.org/).
This allows working on a broad range of DBMS, such as SQLite, MySQL, MariaDB, or PostgreSQL.
* `DataBackendDuckDB`: Connector to [duckdb](https://cran.r-project.org/package=duckdb).
This includes support for Parquet files (see example below).To construct the backends, you have to establish a connection to the DBMS yourself with the [DBI](https://cran.r-project.org/package=DBI) package.
For the serverless SQLite and DuckDB, we provide the converters `as_sqlite_backend()` and `as_duckdb_backend()`.## Installation
You can install the released version of mlr3db from [CRAN](https://CRAN.R-project.org) with:
```{r, eval = FALSE}
install.packages("mlr3db")
```And the development version from [GitHub](https://github.com/) with:
```{r, eval = FALSE}
# install.packages("devtools")
devtools::install_github("mlr-org/mlr3db")
```## Example
### DataBackendDplyr
```{r}
library("mlr3db")# Create a classification task:
task = tsk("spam")# Convert the task backend from a in-memory backend (DataBackendDataTable)
# to an out-of-memory SQLite backend via DataBackendDplyr.
# A temporary directory is used here to store the database files.
task$backend = as_sqlite_backend(task$backend, path = tempfile())# Resample a classification tree using a 3-fold CV.
# The requested data will be queried and fetched from the database in the background.
resample(task, lrn("classif.rpart"), rsmp("cv", folds = 3))
```### DataBackendDuckDB
```{r}
library("mlr3db")# Get an example parquet file from the package install directory:
# spam dataset (tsk("spam")) stored as parquet file
file = system.file(file.path("extdata", "spam.parquet"), package = "mlr3db")# Create a backend on the file
backend = as_duckdb_backend(file)# Construct classification task on the constructed backend
task = as_task_classif(backend, target = "type")# Resample a classification tree using a 3-fold CV.
# The requested data will be queried and fetched from the database in the background.
resample(task, lrn("classif.rpart"), rsmp("cv", folds = 3))
```