Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mlr-org/mlr3viz
Visualizations for mlr3
https://github.com/mlr-org/mlr3viz
ggplot2 mlr3 r r-package visualization visualizations
Last synced: about 23 hours ago
JSON representation
Visualizations for mlr3
- Host: GitHub
- URL: https://github.com/mlr-org/mlr3viz
- Owner: mlr-org
- License: lgpl-3.0
- Created: 2018-11-16T10:35:30.000Z (almost 6 years ago)
- Default Branch: main
- Last Pushed: 2024-11-06T16:25:59.000Z (about 23 hours ago)
- Last Synced: 2024-11-06T16:46:57.701Z (about 23 hours ago)
- Topics: ggplot2, mlr3, r, r-package, visualization, visualizations
- Language: R
- Homepage: https://mlr3viz.mlr-org.com
- Size: 226 MB
- Stars: 42
- Watchers: 13
- Forks: 8
- Open Issues: 26
-
Metadata Files:
- Readme: README.Rmd
- Changelog: NEWS.md
- License: LICENSE
Awesome Lists containing this project
README
---
output: github_document
---```{r, include = FALSE}
lgr::get_logger("mlr3")$set_threshold("warn")
knitr::opts_chunk$set(fig.path = "man/figures/README-")
knitr::opts_chunk$set(fig.path = "man/figures/README-")
set.seed(1)
options(
datatable.print.nrows = 10,
datatable.print.class = FALSE,
datatable.print.keys = FALSE,
width = 100)
# mute load messages
library("mlr3tuning")
```# mlr3viz
Package website: [release](https://mlr3viz.mlr-org.com/) | [dev](https://mlr3viz.mlr-org.com/dev/)
[![r-cmd-check](https://github.com/mlr-org/mlr3viz/actions/workflows/r-cmd-check.yml/badge.svg)](https://github.com/mlr-org/mlr3viz/actions/workflows/r-cmd-check.yml)
[![CRAN](https://www.r-pkg.org/badges/version/mlr3viz)](https://cran.r-project.org/package=mlr3viz)
[![StackOverflow](https://img.shields.io/badge/stackoverflow-mlr3-orange.svg)](https://stackoverflow.com/questions/tagged/mlr3)
[![Mattermost](https://img.shields.io/badge/chat-mattermost-orange.svg)](https://lmmisld-lmu-stats-slds.srv.mwn.de/mlr_invite/)*mlr3viz* is the visualization package of the [mlr3](https://mlr-org.com/) ecosystem.
It features plots for mlr3 objects such as tasks, learners, predictions, benchmark results, tuning instances and filters via the `autoplot()` generic of [ggplot2](https://ggplot2.tidyverse.org/).
The package draws plots with the [viridis](https://CRAN.R-project.org/package=viridisLite) color palette and applies the [minimal theme](https://ggplot2.tidyverse.org/reference/ggtheme.html).
Visualizations include barplots, boxplots, histograms, ROC curves, and Precision-Recall curves.The [gallery](https://mlr-org.com/gallery/technical/2022-12-22-mlr3viz/) features a **showcase post** of the plots in `mlr3viz`.
## Installation
Install the last release from CRAN:
```{r, eval = FALSE}
install.packages("mlr3")
```Install the development version from GitHub:
```{r, eval = FALSE}
remotes::install_github("mlr-org/mlr3viz")
```## Resources
The [gallery](https://mlr-org.com/gallery/technical/2022-12-22-mlr3viz/) features a showcase post of the visualization functions `mlr3viz`.
## Short Demo
```{r demo, message = FALSE, warning = FALSE, dpi=300}
library(mlr3)
library(mlr3viz)task = tsk("pima")
learner = lrn("classif.rpart", predict_type = "prob")
rr = resample(task, learner, rsmp("cv", folds = 3), store_models = TRUE)# Default plot for task
autoplot(task, type = "target")# ROC curve for resample result
autoplot(rr, type = "roc")
```For more example plots you can have a look at the [pkgdown references](https://mlr3viz.mlr-org.com/reference/index.html) of the respective functions.