An open API service indexing awesome lists of open source software.

https://github.com/mlvlab/DAVI

Official Implementation (Pytorch) of "DAVI: Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems", ECCV 2024 Oral paper
https://github.com/mlvlab/DAVI

diffusion-models eccv2024 generative-model inverse-problems

Last synced: 3 months ago
JSON representation

Official Implementation (Pytorch) of "DAVI: Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems", ECCV 2024 Oral paper

Awesome Lists containing this project

README

        


Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems



Sojin Lee*, Dogyun Park*, Inho Kong, Hyunwoo J. Kim†.


ECCV 2024 Oral




This repository contains the official PyTorch implementation of **_DAVI_**: **D**iffusion Prior-Based **A**mortized **V**ariational **I**nference for Noisy Inverse Problems accepted at **ECCV 2024 as an oral presentation.**

Our framework allows efficient posterior sampling with **a single evaluation of a neural network**, and enables generalization to both seen and unseen measurements without the need for test-time optimization. We provide five image restoration tasks (**Gaussian deblur, 4x Super-resolution, Box inpainting, Denoising, and Colorization**) with two benchmark datasets (FFHQ and ImageNet).



## Setting

Please follow these steps to set up the repository.

### 1. Clone the Repository

```
git clone https://github.com/mlvlab/DAVI.git
cd DAVI
```

### 2. Install Environment

```
conda create -n DAVI python==3.8
conda activate DAVI
conda install pytorch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 pytorch-cuda=12.1 -c pytorch -c nvidia
```

```
pip install accelerate ema_pytorch matplotlib piq scikit-image pytorch-fid wandb
```

### 3. Download Pre-trained models and Official Checkpoints

We utilize pre-trained models from [FFHQ (ffhq_10m.pt)](https://drive.google.com/drive/folders/1jElnRoFv7b31fG0v6pTSQkelbSX3xGZh) and [ImageNet (256x256_diffusion_uncond.pt)](https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion_uncond.pt) obtained from [DPS](https://github.com/DPS2022/diffusion-posterior-sampling?tab=readme-ov-file) and [guided_diffusion](https://github.com/openai/guided-diffusion), respectively.

- Download the checkpoints for FFHQ and ImageNet from this [Google Drive Link](https://drive.google.com/drive/folders/1h8vKYwTYSshljBuW9NdBRJQSp_HBPZdA).
- Place the pre-trained models into the `model/` directory.
- Place our checkpoints into `model/official_ckpt/ffhq` or `model/official_ckpt/imagenet`.

### 4. Prepare Data

For amortized optimization, we use the FFHQ 49K dataset and the ImageNet 130K dataset, which are subsets of the training datasets used for the pre-trained models. These subsets are distinct from the validation datasets (ffhq_1K and imagenet_val_1K) used for evaluation.

- ### FFHQ 256x256

- `data/ffhq_1K` and `data/ffhq_49K`.

We downloaded the FFHQ dataset and resized it to 256x256, following the instructions on the [ffhq-dataset
public site](https://github.com/NVlabs/ffhq-dataset).

We use 00000-00999 as the validation set (1K) and 01000-49999 (49K) as the training set.

- ### ImageNet 256x256

- `data/imagenet_val_1K` and `data/imagenet_130K`.

We downloaded the [ImageNet 100 dataset](https://www.kaggle.com/datasets/ambityga/imagenet100) and use its training set.

- ### Measurements as numpy format

- `data/y_npy`

During amortized training, we load a subset of the training set to monitor the convergence of the training process.

You can specify degradation types using the `--deg` option.

- Gaussian Deblur `gaussian`
- 4x Super-resolution `sr_averagepooling`
- Box inpainting `inpainting`
- Denoising `deno`
- Colorization `colorization`

```
python utils/get_measurements.py --deg gaussian --data_dir data/ffhq_49K
```

## Overall directory

```
├── results

├── models
│ ├── ffhq_10m.pt # FFHQ for training
│ ├── 256x256_diffusion_uncond.pt # ImageNet for training
│ └── official_ckpt # For Evaluation
│ ├── ffhq
│ │ ├── gaussian_ema.pt
│ │ ├── sr_averagepooling_ema.pt
│ │ ├── ...
│ │ ├── ...
│ ├── imagenet
│ │ ├── gaussian_ema.pt
│ │ ├── sr_averagepooling_ema.pt
│ │ ├── ...
│ └── └── ...

├── data # including training set and evaluation set
│ ├── ffhq_1K # FFHQ evluation
│ ├── imagenet_val_1K # ImageNet evluation
│ ├── ffhq_49K # FFHQ training
│ ├── imagenet_130K # ImageNet training
│ └── y_npy
│ ├── ffhq_1k_npy
│ │ ├── gaussian
│ │ ├── sr_averagepooling
│ │ ├── ...
│ │ └── ...
│ ├── imagenet_val_1k_npy
│ │ ├── gaussian
│ │ ├── sr_averagepooling
│ │ ├── ...
└─────────└── └── ...
```

## Evaluation

### 1. Restore degraded images

- You can specify the directory of measurements with `--y_dir data/y_npy`

```
accelerate launch --num_processes=1 eval.py --eval_dir data/ffhq_1K --deg gaussian --perturb_h 0.1 --ckpt model/official_ckpt/ffhq/gaussian_ema.pt
```

### 2. Evaluate PSNR,LPIPS and FID

- PSNR and LPIPS
```
python utils/eval_psnr_lpips.py
```
- FID: [pytorch-fid](https://github.com/mseitzer/pytorch-fid)
```
python -m pytorch_fid source_dir recon_dir
```

## Train with MultiGPU

- To check training logs, use the `--use_wandb` flag.

```
accelerate launch --multi_gpu --num_processes=4 train.py --data_dir data/ffhq_49K/ --model_path model/ffhq_10m.pt --deg gaussian --t_ikl 400 --weight_con 0.5 --reg_coeff 0.25 --perturb_h 0.1
```