Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mmaaz60/object_detection_in_aerial_images
The repository contains the code for Object Detection in Aerial Images (iSAID dataset) using Faster RCNN and scale-aware data augmentation (SA-AutoAug).
https://github.com/mmaaz60/object_detection_in_aerial_images
Last synced: 18 days ago
JSON representation
The repository contains the code for Object Detection in Aerial Images (iSAID dataset) using Faster RCNN and scale-aware data augmentation (SA-AutoAug).
- Host: GitHub
- URL: https://github.com/mmaaz60/object_detection_in_aerial_images
- Owner: mmaaz60
- Created: 2022-04-10T13:30:07.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2022-04-10T13:55:38.000Z (over 2 years ago)
- Last Synced: 2024-10-10T18:11:04.815Z (about 1 month ago)
- Language: Python
- Size: 780 KB
- Stars: 4
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
## Installation
The code is tested with PyTorch 1.8.0 and CUDA 11.1.
1. Install PyTorch and torchvision
```shell
pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html```
2. Install Detectron2
```shell
python -m pip install -e .```
## Training
Use script `train_faster_rcnn.py` to train the models. The script expect the following parameters,* -data_dir -> iSAID dataset path
* -config -> Detectron2 config file listing all model and training related configurations
* -output_dir -> Output directory to save checkpoints and logs
* --resume -> Flag to resume the training from the available latest checkpoints
* --eval_only -> Flag used to perform only the evaluation
* --eval_checkpoints -> Path to the checkpoints to use for the evaluationThe configs for training using SA-AutoAug are available at [here](configs/SA_AutoAug).
## Evaluate pretrained models
Run the following command to evaluate the provided pretrained models,```shell
python train_faster_rcnn.py -data_dir -output_dir --eval_only --eval_checkpoints```
## Visualization
The visualizations can be generated using the script `visualize_detections.py`.Should you have any questions, please contact at [email protected] or [email protected]