https://github.com/mmz33/dpll-sat-solver
Implementation of DPLL SAT solver algorithm
https://github.com/mmz33/dpll-sat-solver
backtracking dpll-algorithm heuristics sat-solver
Last synced: 8 months ago
JSON representation
Implementation of DPLL SAT solver algorithm
- Host: GitHub
- URL: https://github.com/mmz33/dpll-sat-solver
- Owner: mmz33
- Created: 2020-02-01T13:47:10.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2020-02-01T20:33:30.000Z (over 5 years ago)
- Last Synced: 2025-01-22T19:14:00.667Z (9 months ago)
- Topics: backtracking, dpll-algorithm, heuristics, sat-solver
- Language: Python
- Homepage:
- Size: 820 KB
- Stars: 0
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# DPLL-SAT-Solver
Davis–Putnam–Logemann–Loveland (DPLL) algorithm is a complete, backtracking-based search algorithm for deciding the satisfiability of propositional logic formulae in conjunctive normal form.
## Run
Input files format follows [DIMACS](http://www.satcompetition.org/2004/format-solvers2004.html).
To run on the benchmarks folder do:
`python3 sat_dpll.py --run_benchmarks`. The code takes around 6 seconds to solve 100 SAT problems.
To run with a seperate input file, just do:
`python3 sat_dpll.py --input_file your_file`
## References
- https://en.wikipedia.org/wiki/DPLL_algorithm
- https://ths.rwth-aachen.de/wp-content/uploads/sites/4/teaching/vorlesung_satchecking/ws14_15/02a_sat_handout.pdf
- http://www.cril.univ-artois.fr/~coste/Articles/coste-etal-sat05.pdf