Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mnarayan/ddplot
Depth vs. Depth Plots
https://github.com/mnarayan/ddplot
Last synced: 7 days ago
JSON representation
Depth vs. Depth Plots
- Host: GitHub
- URL: https://github.com/mnarayan/ddplot
- Owner: mnarayan
- License: bsd-3-clause
- Created: 2018-04-04T02:29:25.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2018-04-04T02:31:17.000Z (over 6 years ago)
- Last Synced: 2024-12-13T12:09:43.856Z (9 days ago)
- Size: 1.95 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Depth vs. Depth Plots
## Choice of Data Depth
- *Mahalanobis* Depth
- *Half Space* Depth
- *Projection* Depth
- *Simplicial* DepthNote: Mahalanobis depth does not do well for elliptical and non-elliptical distributions, projection depth is ideal for elliptical distributions while half-space or simplicial depths do well for non-elliptical distributions.
## References
- Liu, R. (1990), “On a Notion of Data Depth Based on Random Simplices,” The Annals of Statistics, 18, 405–414.
- Liu, R. (1992), “Data Depth and Multivariate Rank Tests,” in L1-Statistical Analysis and Related Methods, ed. Y. Dodge, Amsterdam: North-Holland, pp. 279–294.
- Liu, R., Parelius, J., and Singh, K. (1999), “Multivariate Analysis by Data Depth: Descriptive Statistics, Graphics and Inference" (with discussion), Ann. Statist. Volume 27, Number 3 (1999), 783-858. doi:[10.1214/aos/1018031260](https://projecteuclid.org/euclid.aos/1018031260)
- Jun Li , Juan A. Cuesta-Albertos & Regina Y. Liu (2012) DD-Classifier: Nonparametric Classification Procedure Based on DD-Plot, JASA, 107:498, 737-753, doi:[10.1080/01621459.2012.688462](https://doi.org/10.1080/01621459.2012.688462)
> In this article, we use Mahalanobis depth to cover the well-studied Gaussian
case, and half-space depth, simplicial depth, and projection
depth to explore the robustness aspect of our approach. The last
three depths are geometric and thus completely nonparametric.