https://github.com/modelcontextprotocol/python-sdk
The official Python SDK for Model Context Protocol servers and clients
https://github.com/modelcontextprotocol/python-sdk
Last synced: about 18 hours ago
JSON representation
The official Python SDK for Model Context Protocol servers and clients
- Host: GitHub
- URL: https://github.com/modelcontextprotocol/python-sdk
- Owner: modelcontextprotocol
- License: mit
- Created: 2024-09-24T21:01:35.000Z (7 months ago)
- Default Branch: main
- Last Pushed: 2025-05-04T17:59:31.000Z (1 day ago)
- Last Synced: 2025-05-05T13:01:38.977Z (about 19 hours ago)
- Language: Python
- Homepage: https://modelcontextprotocol.io
- Size: 1.54 MB
- Stars: 11,391
- Watchers: 98
- Forks: 1,249
- Open Issues: 281
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
- Security: SECURITY.md
Awesome Lists containing this project
- awesome-mcp - Python - Official Python SDK. (SDKs / Offcial)
- awesome-mcp-servers - Python MCP SDK - The official Python SDK for Model Context Protocol servers and clients (Table of Contents / Developer Tools)
- awesome-mcp-servers - Python MCP SDK - The official Python SDK for Model Context Protocol servers and clients (Table of Contents / Developer Tools)
- awesome-hacking-lists - modelcontextprotocol/python-sdk - The official Python SDK for Model Context Protocol servers and clients (Python)
- awesome-ccamel - modelcontextprotocol/python-sdk - The official Python SDK for Model Context Protocol servers and clients (Python)
README
# MCP Python SDK
Python implementation of the Model Context Protocol (MCP)
[![PyPI][pypi-badge]][pypi-url]
[![MIT licensed][mit-badge]][mit-url]
[![Python Version][python-badge]][python-url]
[![Documentation][docs-badge]][docs-url]
[![Specification][spec-badge]][spec-url]
[![GitHub Discussions][discussions-badge]][discussions-url]## Table of Contents
- [MCP Python SDK](#mcp-python-sdk)
- [Overview](#overview)
- [Installation](#installation)
- [Adding MCP to your python project](#adding-mcp-to-your-python-project)
- [Running the standalone MCP development tools](#running-the-standalone-mcp-development-tools)
- [Quickstart](#quickstart)
- [What is MCP?](#what-is-mcp)
- [Core Concepts](#core-concepts)
- [Server](#server)
- [Resources](#resources)
- [Tools](#tools)
- [Prompts](#prompts)
- [Images](#images)
- [Context](#context)
- [Running Your Server](#running-your-server)
- [Development Mode](#development-mode)
- [Claude Desktop Integration](#claude-desktop-integration)
- [Direct Execution](#direct-execution)
- [Mounting to an Existing ASGI Server](#mounting-to-an-existing-asgi-server)
- [Examples](#examples)
- [Echo Server](#echo-server)
- [SQLite Explorer](#sqlite-explorer)
- [Advanced Usage](#advanced-usage)
- [Low-Level Server](#low-level-server)
- [Writing MCP Clients](#writing-mcp-clients)
- [MCP Primitives](#mcp-primitives)
- [Server Capabilities](#server-capabilities)
- [Documentation](#documentation)
- [Contributing](#contributing)
- [License](#license)[pypi-badge]: https://img.shields.io/pypi/v/mcp.svg
[pypi-url]: https://pypi.org/project/mcp/
[mit-badge]: https://img.shields.io/pypi/l/mcp.svg
[mit-url]: https://github.com/modelcontextprotocol/python-sdk/blob/main/LICENSE
[python-badge]: https://img.shields.io/pypi/pyversions/mcp.svg
[python-url]: https://www.python.org/downloads/
[docs-badge]: https://img.shields.io/badge/docs-modelcontextprotocol.io-blue.svg
[docs-url]: https://modelcontextprotocol.io
[spec-badge]: https://img.shields.io/badge/spec-spec.modelcontextprotocol.io-blue.svg
[spec-url]: https://spec.modelcontextprotocol.io
[discussions-badge]: https://img.shields.io/github/discussions/modelcontextprotocol/python-sdk
[discussions-url]: https://github.com/modelcontextprotocol/python-sdk/discussions## Overview
The Model Context Protocol allows applications to provide context for LLMs in a standardized way, separating the concerns of providing context from the actual LLM interaction. This Python SDK implements the full MCP specification, making it easy to:
- Build MCP clients that can connect to any MCP server
- Create MCP servers that expose resources, prompts and tools
- Use standard transports like stdio and SSE
- Handle all MCP protocol messages and lifecycle events## Installation
### Adding MCP to your python project
We recommend using [uv](https://docs.astral.sh/uv/) to manage your Python projects.
If you haven't created a uv-managed project yet, create one:
```bash
uv init mcp-server-demo
cd mcp-server-demo
```Then add MCP to your project dependencies:
```bash
uv add "mcp[cli]"
```Alternatively, for projects using pip for dependencies:
```bash
pip install "mcp[cli]"
```### Running the standalone MCP development tools
To run the mcp command with uv:
```bash
uv run mcp
```## Quickstart
Let's create a simple MCP server that exposes a calculator tool and some data:
```python
# server.py
from mcp.server.fastmcp import FastMCP# Create an MCP server
mcp = FastMCP("Demo")# Add an addition tool
@mcp.tool()
def add(a: int, b: int) -> int:
"""Add two numbers"""
return a + b# Add a dynamic greeting resource
@mcp.resource("greeting://{name}")
def get_greeting(name: str) -> str:
"""Get a personalized greeting"""
return f"Hello, {name}!"
```You can install this server in [Claude Desktop](https://claude.ai/download) and interact with it right away by running:
```bash
mcp install server.py
```Alternatively, you can test it with the MCP Inspector:
```bash
mcp dev server.py
```## What is MCP?
The [Model Context Protocol (MCP)](https://modelcontextprotocol.io) lets you build servers that expose data and functionality to LLM applications in a secure, standardized way. Think of it like a web API, but specifically designed for LLM interactions. MCP servers can:
- Expose data through **Resources** (think of these sort of like GET endpoints; they are used to load information into the LLM's context)
- Provide functionality through **Tools** (sort of like POST endpoints; they are used to execute code or otherwise produce a side effect)
- Define interaction patterns through **Prompts** (reusable templates for LLM interactions)
- And more!## Core Concepts
### Server
The FastMCP server is your core interface to the MCP protocol. It handles connection management, protocol compliance, and message routing:
```python
# Add lifespan support for startup/shutdown with strong typing
from contextlib import asynccontextmanager
from collections.abc import AsyncIterator
from dataclasses import dataclassfrom fake_database import Database # Replace with your actual DB type
from mcp.server.fastmcp import Context, FastMCP
# Create a named server
mcp = FastMCP("My App")# Specify dependencies for deployment and development
mcp = FastMCP("My App", dependencies=["pandas", "numpy"])@dataclass
class AppContext:
db: Database@asynccontextmanager
async def app_lifespan(server: FastMCP) -> AsyncIterator[AppContext]:
"""Manage application lifecycle with type-safe context"""
# Initialize on startup
db = await Database.connect()
try:
yield AppContext(db=db)
finally:
# Cleanup on shutdown
await db.disconnect()# Pass lifespan to server
mcp = FastMCP("My App", lifespan=app_lifespan)# Access type-safe lifespan context in tools
@mcp.tool()
def query_db(ctx: Context) -> str:
"""Tool that uses initialized resources"""
db = ctx.request_context.lifespan_context.db
return db.query()
```### Resources
Resources are how you expose data to LLMs. They're similar to GET endpoints in a REST API - they provide data but shouldn't perform significant computation or have side effects:
```python
from mcp.server.fastmcp import FastMCPmcp = FastMCP("My App")
@mcp.resource("config://app")
def get_config() -> str:
"""Static configuration data"""
return "App configuration here"@mcp.resource("users://{user_id}/profile")
def get_user_profile(user_id: str) -> str:
"""Dynamic user data"""
return f"Profile data for user {user_id}"
```### Tools
Tools let LLMs take actions through your server. Unlike resources, tools are expected to perform computation and have side effects:
```python
import httpx
from mcp.server.fastmcp import FastMCPmcp = FastMCP("My App")
@mcp.tool()
def calculate_bmi(weight_kg: float, height_m: float) -> float:
"""Calculate BMI given weight in kg and height in meters"""
return weight_kg / (height_m**2)@mcp.tool()
async def fetch_weather(city: str) -> str:
"""Fetch current weather for a city"""
async with httpx.AsyncClient() as client:
response = await client.get(f"https://api.weather.com/{city}")
return response.text
```### Prompts
Prompts are reusable templates that help LLMs interact with your server effectively:
```python
from mcp.server.fastmcp import FastMCP
from mcp.server.fastmcp.prompts import basemcp = FastMCP("My App")
@mcp.prompt()
def review_code(code: str) -> str:
return f"Please review this code:\n\n{code}"@mcp.prompt()
def debug_error(error: str) -> list[base.Message]:
return [
base.UserMessage("I'm seeing this error:"),
base.UserMessage(error),
base.AssistantMessage("I'll help debug that. What have you tried so far?"),
]
```### Images
FastMCP provides an `Image` class that automatically handles image data:
```python
from mcp.server.fastmcp import FastMCP, Image
from PIL import Image as PILImagemcp = FastMCP("My App")
@mcp.tool()
def create_thumbnail(image_path: str) -> Image:
"""Create a thumbnail from an image"""
img = PILImage.open(image_path)
img.thumbnail((100, 100))
return Image(data=img.tobytes(), format="png")
```### Context
The Context object gives your tools and resources access to MCP capabilities:
```python
from mcp.server.fastmcp import FastMCP, Contextmcp = FastMCP("My App")
@mcp.tool()
async def long_task(files: list[str], ctx: Context) -> str:
"""Process multiple files with progress tracking"""
for i, file in enumerate(files):
ctx.info(f"Processing {file}")
await ctx.report_progress(i, len(files))
data, mime_type = await ctx.read_resource(f"file://{file}")
return "Processing complete"
```## Running Your Server
### Development Mode
The fastest way to test and debug your server is with the MCP Inspector:
```bash
mcp dev server.py# Add dependencies
mcp dev server.py --with pandas --with numpy# Mount local code
mcp dev server.py --with-editable .
```### Claude Desktop Integration
Once your server is ready, install it in Claude Desktop:
```bash
mcp install server.py# Custom name
mcp install server.py --name "My Analytics Server"# Environment variables
mcp install server.py -v API_KEY=abc123 -v DB_URL=postgres://...
mcp install server.py -f .env
```### Direct Execution
For advanced scenarios like custom deployments:
```python
from mcp.server.fastmcp import FastMCPmcp = FastMCP("My App")
if __name__ == "__main__":
mcp.run()
```Run it with:
```bash
python server.py
# or
mcp run server.py
```### Mounting to an Existing ASGI Server
You can mount the SSE server to an existing ASGI server using the `sse_app` method. This allows you to integrate the SSE server with other ASGI applications.
```python
from starlette.applications import Starlette
from starlette.routing import Mount, Host
from mcp.server.fastmcp import FastMCPmcp = FastMCP("My App")
# Mount the SSE server to the existing ASGI server
app = Starlette(
routes=[
Mount('/', app=mcp.sse_app()),
]
)# or dynamically mount as host
app.router.routes.append(Host('mcp.acme.corp', app=mcp.sse_app()))
```For more information on mounting applications in Starlette, see the [Starlette documentation](https://www.starlette.io/routing/#submounting-routes).
## Examples
### Echo Server
A simple server demonstrating resources, tools, and prompts:
```python
from mcp.server.fastmcp import FastMCPmcp = FastMCP("Echo")
@mcp.resource("echo://{message}")
def echo_resource(message: str) -> str:
"""Echo a message as a resource"""
return f"Resource echo: {message}"@mcp.tool()
def echo_tool(message: str) -> str:
"""Echo a message as a tool"""
return f"Tool echo: {message}"@mcp.prompt()
def echo_prompt(message: str) -> str:
"""Create an echo prompt"""
return f"Please process this message: {message}"
```### SQLite Explorer
A more complex example showing database integration:
```python
import sqlite3from mcp.server.fastmcp import FastMCP
mcp = FastMCP("SQLite Explorer")
@mcp.resource("schema://main")
def get_schema() -> str:
"""Provide the database schema as a resource"""
conn = sqlite3.connect("database.db")
schema = conn.execute("SELECT sql FROM sqlite_master WHERE type='table'").fetchall()
return "\n".join(sql[0] for sql in schema if sql[0])@mcp.tool()
def query_data(sql: str) -> str:
"""Execute SQL queries safely"""
conn = sqlite3.connect("database.db")
try:
result = conn.execute(sql).fetchall()
return "\n".join(str(row) for row in result)
except Exception as e:
return f"Error: {str(e)}"
```## Advanced Usage
### Low-Level Server
For more control, you can use the low-level server implementation directly. This gives you full access to the protocol and allows you to customize every aspect of your server, including lifecycle management through the lifespan API:
```python
from contextlib import asynccontextmanager
from collections.abc import AsyncIteratorfrom fake_database import Database # Replace with your actual DB type
from mcp.server import Server
@asynccontextmanager
async def server_lifespan(server: Server) -> AsyncIterator[dict]:
"""Manage server startup and shutdown lifecycle."""
# Initialize resources on startup
db = await Database.connect()
try:
yield {"db": db}
finally:
# Clean up on shutdown
await db.disconnect()# Pass lifespan to server
server = Server("example-server", lifespan=server_lifespan)# Access lifespan context in handlers
@server.call_tool()
async def query_db(name: str, arguments: dict) -> list:
ctx = server.request_context
db = ctx.lifespan_context["db"]
return await db.query(arguments["query"])
```The lifespan API provides:
- A way to initialize resources when the server starts and clean them up when it stops
- Access to initialized resources through the request context in handlers
- Type-safe context passing between lifespan and request handlers```python
import mcp.server.stdio
import mcp.types as types
from mcp.server.lowlevel import NotificationOptions, Server
from mcp.server.models import InitializationOptions# Create a server instance
server = Server("example-server")@server.list_prompts()
async def handle_list_prompts() -> list[types.Prompt]:
return [
types.Prompt(
name="example-prompt",
description="An example prompt template",
arguments=[
types.PromptArgument(
name="arg1", description="Example argument", required=True
)
],
)
]@server.get_prompt()
async def handle_get_prompt(
name: str, arguments: dict[str, str] | None
) -> types.GetPromptResult:
if name != "example-prompt":
raise ValueError(f"Unknown prompt: {name}")return types.GetPromptResult(
description="Example prompt",
messages=[
types.PromptMessage(
role="user",
content=types.TextContent(type="text", text="Example prompt text"),
)
],
)async def run():
async with mcp.server.stdio.stdio_server() as (read_stream, write_stream):
await server.run(
read_stream,
write_stream,
InitializationOptions(
server_name="example",
server_version="0.1.0",
capabilities=server.get_capabilities(
notification_options=NotificationOptions(),
experimental_capabilities={},
),
),
)if __name__ == "__main__":
import asyncioasyncio.run(run())
```### Writing MCP Clients
The SDK provides a high-level client interface for connecting to MCP servers:
```python
from mcp import ClientSession, StdioServerParameters, types
from mcp.client.stdio import stdio_client# Create server parameters for stdio connection
server_params = StdioServerParameters(
command="python", # Executable
args=["example_server.py"], # Optional command line arguments
env=None, # Optional environment variables
)# Optional: create a sampling callback
async def handle_sampling_message(
message: types.CreateMessageRequestParams,
) -> types.CreateMessageResult:
return types.CreateMessageResult(
role="assistant",
content=types.TextContent(
type="text",
text="Hello, world! from model",
),
model="gpt-3.5-turbo",
stopReason="endTurn",
)async def run():
async with stdio_client(server_params) as (read, write):
async with ClientSession(
read, write, sampling_callback=handle_sampling_message
) as session:
# Initialize the connection
await session.initialize()# List available prompts
prompts = await session.list_prompts()# Get a prompt
prompt = await session.get_prompt(
"example-prompt", arguments={"arg1": "value"}
)# List available resources
resources = await session.list_resources()# List available tools
tools = await session.list_tools()# Read a resource
content, mime_type = await session.read_resource("file://some/path")# Call a tool
result = await session.call_tool("tool-name", arguments={"arg1": "value"})if __name__ == "__main__":
import asyncioasyncio.run(run())
```### MCP Primitives
The MCP protocol defines three core primitives that servers can implement:
| Primitive | Control | Description | Example Use |
|-----------|-----------------------|-----------------------------------------------------|------------------------------|
| Prompts | User-controlled | Interactive templates invoked by user choice | Slash commands, menu options |
| Resources | Application-controlled| Contextual data managed by the client application | File contents, API responses |
| Tools | Model-controlled | Functions exposed to the LLM to take actions | API calls, data updates |### Server Capabilities
MCP servers declare capabilities during initialization:
| Capability | Feature Flag | Description |
|-------------|------------------------------|------------------------------------|
| `prompts` | `listChanged` | Prompt template management |
| `resources` | `subscribe`
`listChanged`| Resource exposure and updates |
| `tools` | `listChanged` | Tool discovery and execution |
| `logging` | - | Server logging configuration |
| `completion`| - | Argument completion suggestions |## Documentation
- [Model Context Protocol documentation](https://modelcontextprotocol.io)
- [Model Context Protocol specification](https://spec.modelcontextprotocol.io)
- [Officially supported servers](https://github.com/modelcontextprotocol/servers)## Contributing
We are passionate about supporting contributors of all levels of experience and would love to see you get involved in the project. See the [contributing guide](CONTRIBUTING.md) to get started.
## License
This project is licensed under the MIT License - see the LICENSE file for details.