An open API service indexing awesome lists of open source software.

https://github.com/modelscope/ReMe


https://github.com/modelscope/ReMe

Last synced: 3 months ago
JSON representation

Awesome Lists containing this project

README

          

English | [**中文**](./README_ZH.md)


ReMe Logo


Python Version
PyPI Version
License
GitHub Stars


ReMe (formerly MemoryScope): Memory Management Framework for Agents

Remember Me, Refine Me.

---
ReMe provides AI agents with a unified memory system—enabling the ability to extract, reuse, and share memories across
users, tasks, and agents.

```
Personal Memory + Task Memory = Agent Memory
```

Personal memory helps "**understand user preferences**", while task memory helps agents "**perform better**".

---

## 📰 Latest Updates

- **[2025-09]** 🎉 ReMe v0.1.8 has been officially released, adding support for asynchronous operations. It has also been
integrated into the memory service of agentscope-runtime.
- **[2025-09]** 🎉 ReMe v0.1 officially released, integrating task memory and personal memory. If you want to use the
original memoryscope project, you can find it
in [MemoryScope](https://github.com/modelscope/Reme/tree/memoryscope_branch).
- **[2025-09]** 🧪 We validated the effectiveness of task memory extraction and reuse in agents in appworld, bfcl(v3),
and frozenlake environments. For more information,
check [appworld exp](docs/cookbook/appworld/quickstart.md), [bfcl exp](docs/cookbook/bfcl/quickstart.md),
and [frozenlake exp](docs/cookbook/frozenlake/quickstart.md).
- **[2025-08]** 🚀 MCP protocol support is now available -> [MCP Quick Start](docs/mcp_quick_start.md).
- **[2025-06]** 🚀 Multiple backend vector storage support (Elasticsearch &
ChromaDB) -> [Vector DB quick start](docs/vector_store_api_guide.md).
- **[2024-09]** 🧠 [MemoryScope](https://github.com/modelscope/Reme/tree/memoryscope_branch) v0.1 released,
personalized and time-aware memory storage and usage.

---

## ✨ Architecture Design


ReMe Logo

ReMe integrates two complementary memory capabilities:

#### 🧠 **Task Memory/Experience**

Procedural knowledge reused across agents

- **Success Pattern Recognition**: Identify effective strategies and understand their underlying principles
- **Failure Analysis Learning**: Learn from mistakes and avoid repeating the same issues
- **Comparative Patterns**: Different sampling trajectories provide more valuable memories through comparison
- **Validation Patterns**: Confirm the effectiveness of extracted memories through validation modules

Learn more about how to use task memory from [task memory](docs/task_memory/task_memory.md)

#### 👤 **Personal Memory**

Contextualized memory for specific users

- **Individual Preferences**: User habits, preferences, and interaction styles
- **Contextual Adaptation**: Intelligent memory management based on time and context
- **Progressive Learning**: Gradually build deep understanding through long-term interaction
- **Time Awareness**: Time sensitivity in both retrieval and integration

Learn more about how to use personal memory from [personal memory](docs/personal_memory/personal_memory.md)

---

## 🛠️ Installation

### Install from PyPI (Recommended)

```bash
pip install reme-ai
```

### Install from Source

```bash
git clone https://github.com/modelscope/ReMe.git
cd ReMe
pip install .
```

### Environment Configuration

Copy `example.env` to .env and modify the corresponding parameters:

```bash
FLOW_APP_NAME=ReMe
FLOW_LLM_API_KEY=sk-xxxx
FLOW_LLM_BASE_URL=https://xxxx/v1
FLOW_EMBEDDING_API_KEY=sk-xxxx
FLOW_EMBEDDING_BASE_URL=https://xxxx/v1
```

---

## 🚀 Quick Start

### HTTP Service Startup

```bash
reme \
backend=http \
http.port=8002 \
llm.default.model_name=qwen3-30b-a3b-thinking-2507 \
embedding_model.default.model_name=text-embedding-v4 \
vector_store.default.backend=local
```

### MCP Server Support

```bash
reme \
backend=mcp \
mcp.transport=stdio \
llm.default.model_name=qwen3-30b-a3b-thinking-2507 \
embedding_model.default.model_name=text-embedding-v4 \
vector_store.default.backend=local
```

### Core API Usage

#### Task Memory Management

```python
import requests

# Experience Summarizer: Learn from execution trajectories
response = requests.post("http://localhost:8002/summary_task_memory", json={
"workspace_id": "task_workspace",
"trajectories": [
{"messages": [{"role": "user", "content": "Help me create a project plan"}], "score": 1.0}
]
})

# Retriever: Get relevant memories
response = requests.post("http://localhost:8002/retrieve_task_memory", json={
"workspace_id": "task_workspace",
"query": "How to efficiently manage project progress?",
"top_k": 1
})
```

curl version

```bash
# Experience Summarizer: Learn from execution trajectories
curl -X POST http://localhost:8002/summary_task_memory \
-H "Content-Type: application/json" \
-d '{
"workspace_id": "task_workspace",
"trajectories": [
{"messages": [{"role": "user", "content": "Help me create a project plan"}], "score": 1.0}
]
}'

# Retriever: Get relevant memories
curl -X POST http://localhost:8002/retrieve_task_memory \
-H "Content-Type: application/json" \
-d '{
"workspace_id": "task_workspace",
"query": "How to efficiently manage project progress?",
"top_k": 1
}'
```

Node.js version

```javascript
// Experience Summarizer: Learn from execution trajectories
fetch("http://localhost:8002/summary_task_memory", {
method: "POST",
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify({
workspace_id: "task_workspace",
trajectories: [
{messages: [{role: "user", content: "Help me create a project plan"}], score: 1.0}
]
})
})
.then(response => response.json())
.then(data => console.log(data));

// Retriever: Get relevant memories
fetch("http://localhost:8002/retrieve_task_memory", {
method: "POST",
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify({
workspace_id: "task_workspace",
query: "How to efficiently manage project progress?",
top_k: 1
})
})
.then(response => response.json())
.then(data => console.log(data));
```

#### Personal Memory Management

```python
# Memory Integration: Learn from user interactions
response = requests.post("http://localhost:8002/summary_personal_memory", json={
"workspace_id": "task_workspace",
"trajectories": [
{"messages":
[
{"role": "user", "content": "I like to drink coffee while working in the morning"},
{"role": "assistant",
"content": "I understand, you prefer to start your workday with coffee to stay energized"}
]
}
]
})

# Memory Retrieval: Get personal memory fragments
response = requests.post("http://localhost:8002/retrieve_personal_memory", json={
"workspace_id": "task_workspace",
"query": "What are the user's work habits?",
"top_k": 5
})
```

curl version

```bash
# Memory Integration: Learn from user interactions
curl -X POST http://localhost:8002/summary_personal_memory \
-H "Content-Type: application/json" \
-d '{
"workspace_id": "task_workspace",
"trajectories": [
{"messages": [
{"role": "user", "content": "I like to drink coffee while working in the morning"},
{"role": "assistant", "content": "I understand, you prefer to start your workday with coffee to stay energized"}
]}
]
}'

# Memory Retrieval: Get personal memory fragments
curl -X POST http://localhost:8002/retrieve_personal_memory \
-H "Content-Type: application/json" \
-d '{
"workspace_id": "task_workspace",
"query": "What are the user's work habits?",
"top_k": 5
}'
```

Node.js version

```javascript
// Memory Integration: Learn from user interactions
fetch("http://localhost:8002/summary_personal_memory", {
method: "POST",
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify({
workspace_id: "task_workspace",
trajectories: [
{messages: [
{role: "user", content: "I like to drink coffee while working in the morning"},
{role: "assistant", content: "I understand, you prefer to start your workday with coffee to stay energized"}
]}
]
})
})
.then(response => response.json())
.then(data => console.log(data));

// Memory Retrieval: Get personal memory fragments
fetch("http://localhost:8002/retrieve_personal_memory", {
method: "POST",
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify({
workspace_id: "task_workspace",
query: "What are the user's work habits?",
top_k: 5
})
})
.then(response => response.json())
.then(data => console.log(data));
```

---

## 📦 Ready-to-Use Libraries

ReMe provides pre-built memory libraries that agents can immediately use with verified best practices:

### Available Libraries

- **`appworld.jsonl`**: Memory library for Appworld agent interactions, covering complex task planning and execution
patterns
- **`bfcl_v3.jsonl`**: Working memory library for BFCL tool calls

### Quick Usage

```python
# Load pre-built memories
response = requests.post("http://localhost:8002/vector_store", json={
"workspace_id": "appworld",
"action": "load",
"path": "./docs/library/"
})

# Query relevant memories
response = requests.post("http://localhost:8002/retrieve_task_memory", json={
"workspace_id": "appworld",
"query": "How to navigate to settings and update user profile?",
"top_k": 1
})
```

## 🧪 Experiments

### 🌍 [Appworld Experiment](docs/cookbook/appworld/quickstart.md)

We tested ReMe on Appworld using qwen3-8b:

| Method | pass@1 | pass@2 | pass@4 |
|--------------|-------------------|-------------------|-------------------|
| without ReMe | 0.083 | 0.140 | 0.228 |
| with ReMe | 0.109 **(+2.6%)** | 0.175 **(+3.5%)** | 0.281 **(+5.3%)** |

Pass@K measures the probability that at least one of the K generated samples successfully completes the task (
score=1).
The current experiment uses an internal AppWorld environment, which may have slight differences.

You can find more details on reproducing the experiment in [quickstart.md](docs/cookbook/appworld/quickstart.md).

### 🧊 [Frozenlake Experiment](docs/cookbook/frozenlake/quickstart.md)

| without ReMe | with ReMe |
|:--------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------:|
|

GIF 1

|

GIF 2

|

We tested on 100 random frozenlake maps using qwen3-8b:

| Method | pass rate |
|--------------|------------------|
| without ReMe | 0.66 |
| with ReMe | 0.72 **(+6.0%)** |

You can find more details on reproducing the experiment in [quickstart.md](docs/cookbook/frozenlake/quickstart.md).

### 🔧 [BFCL-V3 Experiment](docs/cookbook/bfcl/quickstart.md)

We tested ReMe on BFCL-V3 multi-turn-base (randomly split 50train/150val) using qwen3-8b:

| Method | pass@1 | pass@2 | pass@4 |
|--------------|---------------------|---------------------|---------------------|
| without ReMe | 0.2472 | 0.2733 | 0.2922 |
| with ReMe | 0.3061 **(+5.89%)** | 0.3500 **(+7.67%)** | 0.3888 **(+9.66%)** |

## 📚 Resources

- **[Quick Start](./cookbook/simple_demo)**: Get started quickly with practical examples
- **[Vector Storage Setup](docs/vector_store_api_guide.md)**: Configure local/vector databases and usage
- **[MCP Guide](docs/mcp_quick_start.md)**: Create MCP services
- **[personal memory](docs/personal_memory)** & **[task memory](docs/task_memory)** : Operators used in personal memory and task memory, You can modify the config to customize the pipelines.
- **[Example Collection](./cookbook)**: Real use cases and best practices

---

## 🤝 Contribution

We believe the best memory systems come from collective wisdom. Contributions welcome 👉[Guide](docs/contribution.md):

### Code Contributions

- New operation and tool development
- Backend implementation and optimization
- API enhancements and new endpoints

### Documentation Improvements

- Usage examples and tutorials
- Best practice guides

---

## 📄 Citation

```bibtex
@software{ReMe2025,
title = {ReMe: Memory Management Framework for Agents},
author = {Li Yu, Jiaji Deng, Zouying Cao},
url = {https://github.com/modelscope/ReMe},
year = {2025}
}
```

---

## ⚖️ License

This project is licensed under the Apache License 2.0 - see the [LICENSE](./LICENSE) file for details.

---

## Star History

[![Star History Chart](https://api.star-history.com/svg?repos=modelscope/ReMe&type=Date)](https://www.star-history.com/#modelscope/ReMe&Date)