https://github.com/modelscope/ReMe
https://github.com/modelscope/ReMe
Last synced: 3 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/modelscope/ReMe
- Owner: modelscope
- License: apache-2.0
- Created: 2024-08-29T02:40:53.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-09-13T03:42:49.000Z (over 1 year ago)
- Last Synced: 2024-09-14T10:22:17.988Z (over 1 year ago)
- Language: Python
- Size: 11.7 MB
- Stars: 7
- Watchers: 3
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- StarryDivineSky - modelscope/MemoryScope
- awesome-LLM-resources - MemoryScope - term memory capabilities, offering a framework for building such abilities. (推理 Inference)
README
English | [**中文**](./README_ZH.md)
ReMe (formerly MemoryScope): Memory Management Framework for Agents
Remember Me, Refine Me.
---
ReMe provides AI agents with a unified memory system—enabling the ability to extract, reuse, and share memories across
users, tasks, and agents.
```
Personal Memory + Task Memory = Agent Memory
```
Personal memory helps "**understand user preferences**", while task memory helps agents "**perform better**".
---
## 📰 Latest Updates
- **[2025-09]** 🎉 ReMe v0.1.8 has been officially released, adding support for asynchronous operations. It has also been
integrated into the memory service of agentscope-runtime.
- **[2025-09]** 🎉 ReMe v0.1 officially released, integrating task memory and personal memory. If you want to use the
original memoryscope project, you can find it
in [MemoryScope](https://github.com/modelscope/Reme/tree/memoryscope_branch).
- **[2025-09]** 🧪 We validated the effectiveness of task memory extraction and reuse in agents in appworld, bfcl(v3),
and frozenlake environments. For more information,
check [appworld exp](docs/cookbook/appworld/quickstart.md), [bfcl exp](docs/cookbook/bfcl/quickstart.md),
and [frozenlake exp](docs/cookbook/frozenlake/quickstart.md).
- **[2025-08]** 🚀 MCP protocol support is now available -> [MCP Quick Start](docs/mcp_quick_start.md).
- **[2025-06]** 🚀 Multiple backend vector storage support (Elasticsearch &
ChromaDB) -> [Vector DB quick start](docs/vector_store_api_guide.md).
- **[2024-09]** 🧠 [MemoryScope](https://github.com/modelscope/Reme/tree/memoryscope_branch) v0.1 released,
personalized and time-aware memory storage and usage.
---
## ✨ Architecture Design
ReMe integrates two complementary memory capabilities:
#### 🧠 **Task Memory/Experience**
Procedural knowledge reused across agents
- **Success Pattern Recognition**: Identify effective strategies and understand their underlying principles
- **Failure Analysis Learning**: Learn from mistakes and avoid repeating the same issues
- **Comparative Patterns**: Different sampling trajectories provide more valuable memories through comparison
- **Validation Patterns**: Confirm the effectiveness of extracted memories through validation modules
Learn more about how to use task memory from [task memory](docs/task_memory/task_memory.md)
#### 👤 **Personal Memory**
Contextualized memory for specific users
- **Individual Preferences**: User habits, preferences, and interaction styles
- **Contextual Adaptation**: Intelligent memory management based on time and context
- **Progressive Learning**: Gradually build deep understanding through long-term interaction
- **Time Awareness**: Time sensitivity in both retrieval and integration
Learn more about how to use personal memory from [personal memory](docs/personal_memory/personal_memory.md)
---
## 🛠️ Installation
### Install from PyPI (Recommended)
```bash
pip install reme-ai
```
### Install from Source
```bash
git clone https://github.com/modelscope/ReMe.git
cd ReMe
pip install .
```
### Environment Configuration
Copy `example.env` to .env and modify the corresponding parameters:
```bash
FLOW_APP_NAME=ReMe
FLOW_LLM_API_KEY=sk-xxxx
FLOW_LLM_BASE_URL=https://xxxx/v1
FLOW_EMBEDDING_API_KEY=sk-xxxx
FLOW_EMBEDDING_BASE_URL=https://xxxx/v1
```
---
## 🚀 Quick Start
### HTTP Service Startup
```bash
reme \
backend=http \
http.port=8002 \
llm.default.model_name=qwen3-30b-a3b-thinking-2507 \
embedding_model.default.model_name=text-embedding-v4 \
vector_store.default.backend=local
```
### MCP Server Support
```bash
reme \
backend=mcp \
mcp.transport=stdio \
llm.default.model_name=qwen3-30b-a3b-thinking-2507 \
embedding_model.default.model_name=text-embedding-v4 \
vector_store.default.backend=local
```
### Core API Usage
#### Task Memory Management
```python
import requests
# Experience Summarizer: Learn from execution trajectories
response = requests.post("http://localhost:8002/summary_task_memory", json={
"workspace_id": "task_workspace",
"trajectories": [
{"messages": [{"role": "user", "content": "Help me create a project plan"}], "score": 1.0}
]
})
# Retriever: Get relevant memories
response = requests.post("http://localhost:8002/retrieve_task_memory", json={
"workspace_id": "task_workspace",
"query": "How to efficiently manage project progress?",
"top_k": 1
})
```
curl version
```bash
# Experience Summarizer: Learn from execution trajectories
curl -X POST http://localhost:8002/summary_task_memory \
-H "Content-Type: application/json" \
-d '{
"workspace_id": "task_workspace",
"trajectories": [
{"messages": [{"role": "user", "content": "Help me create a project plan"}], "score": 1.0}
]
}'
# Retriever: Get relevant memories
curl -X POST http://localhost:8002/retrieve_task_memory \
-H "Content-Type: application/json" \
-d '{
"workspace_id": "task_workspace",
"query": "How to efficiently manage project progress?",
"top_k": 1
}'
```
Node.js version
```javascript
// Experience Summarizer: Learn from execution trajectories
fetch("http://localhost:8002/summary_task_memory", {
method: "POST",
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify({
workspace_id: "task_workspace",
trajectories: [
{messages: [{role: "user", content: "Help me create a project plan"}], score: 1.0}
]
})
})
.then(response => response.json())
.then(data => console.log(data));
// Retriever: Get relevant memories
fetch("http://localhost:8002/retrieve_task_memory", {
method: "POST",
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify({
workspace_id: "task_workspace",
query: "How to efficiently manage project progress?",
top_k: 1
})
})
.then(response => response.json())
.then(data => console.log(data));
```
#### Personal Memory Management
```python
# Memory Integration: Learn from user interactions
response = requests.post("http://localhost:8002/summary_personal_memory", json={
"workspace_id": "task_workspace",
"trajectories": [
{"messages":
[
{"role": "user", "content": "I like to drink coffee while working in the morning"},
{"role": "assistant",
"content": "I understand, you prefer to start your workday with coffee to stay energized"}
]
}
]
})
# Memory Retrieval: Get personal memory fragments
response = requests.post("http://localhost:8002/retrieve_personal_memory", json={
"workspace_id": "task_workspace",
"query": "What are the user's work habits?",
"top_k": 5
})
```
curl version
```bash
# Memory Integration: Learn from user interactions
curl -X POST http://localhost:8002/summary_personal_memory \
-H "Content-Type: application/json" \
-d '{
"workspace_id": "task_workspace",
"trajectories": [
{"messages": [
{"role": "user", "content": "I like to drink coffee while working in the morning"},
{"role": "assistant", "content": "I understand, you prefer to start your workday with coffee to stay energized"}
]}
]
}'
# Memory Retrieval: Get personal memory fragments
curl -X POST http://localhost:8002/retrieve_personal_memory \
-H "Content-Type: application/json" \
-d '{
"workspace_id": "task_workspace",
"query": "What are the user's work habits?",
"top_k": 5
}'
```
Node.js version
```javascript
// Memory Integration: Learn from user interactions
fetch("http://localhost:8002/summary_personal_memory", {
method: "POST",
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify({
workspace_id: "task_workspace",
trajectories: [
{messages: [
{role: "user", content: "I like to drink coffee while working in the morning"},
{role: "assistant", content: "I understand, you prefer to start your workday with coffee to stay energized"}
]}
]
})
})
.then(response => response.json())
.then(data => console.log(data));
// Memory Retrieval: Get personal memory fragments
fetch("http://localhost:8002/retrieve_personal_memory", {
method: "POST",
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify({
workspace_id: "task_workspace",
query: "What are the user's work habits?",
top_k: 5
})
})
.then(response => response.json())
.then(data => console.log(data));
```
---
## 📦 Ready-to-Use Libraries
ReMe provides pre-built memory libraries that agents can immediately use with verified best practices:
### Available Libraries
- **`appworld.jsonl`**: Memory library for Appworld agent interactions, covering complex task planning and execution
patterns
- **`bfcl_v3.jsonl`**: Working memory library for BFCL tool calls
### Quick Usage
```python
# Load pre-built memories
response = requests.post("http://localhost:8002/vector_store", json={
"workspace_id": "appworld",
"action": "load",
"path": "./docs/library/"
})
# Query relevant memories
response = requests.post("http://localhost:8002/retrieve_task_memory", json={
"workspace_id": "appworld",
"query": "How to navigate to settings and update user profile?",
"top_k": 1
})
```
## 🧪 Experiments
### 🌍 [Appworld Experiment](docs/cookbook/appworld/quickstart.md)
We tested ReMe on Appworld using qwen3-8b:
| Method | pass@1 | pass@2 | pass@4 |
|--------------|-------------------|-------------------|-------------------|
| without ReMe | 0.083 | 0.140 | 0.228 |
| with ReMe | 0.109 **(+2.6%)** | 0.175 **(+3.5%)** | 0.281 **(+5.3%)** |
Pass@K measures the probability that at least one of the K generated samples successfully completes the task (
score=1).
The current experiment uses an internal AppWorld environment, which may have slight differences.
You can find more details on reproducing the experiment in [quickstart.md](docs/cookbook/appworld/quickstart.md).
### 🧊 [Frozenlake Experiment](docs/cookbook/frozenlake/quickstart.md)
| without ReMe | with ReMe |
|:--------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------:|
|

| 
|
We tested on 100 random frozenlake maps using qwen3-8b:
| Method | pass rate |
|--------------|------------------|
| without ReMe | 0.66 |
| with ReMe | 0.72 **(+6.0%)** |
You can find more details on reproducing the experiment in [quickstart.md](docs/cookbook/frozenlake/quickstart.md).
### 🔧 [BFCL-V3 Experiment](docs/cookbook/bfcl/quickstart.md)
We tested ReMe on BFCL-V3 multi-turn-base (randomly split 50train/150val) using qwen3-8b:
| Method | pass@1 | pass@2 | pass@4 |
|--------------|---------------------|---------------------|---------------------|
| without ReMe | 0.2472 | 0.2733 | 0.2922 |
| with ReMe | 0.3061 **(+5.89%)** | 0.3500 **(+7.67%)** | 0.3888 **(+9.66%)** |
## 📚 Resources
- **[Quick Start](./cookbook/simple_demo)**: Get started quickly with practical examples
- **[Vector Storage Setup](docs/vector_store_api_guide.md)**: Configure local/vector databases and usage
- **[MCP Guide](docs/mcp_quick_start.md)**: Create MCP services
- **[personal memory](docs/personal_memory)** & **[task memory](docs/task_memory)** : Operators used in personal memory and task memory, You can modify the config to customize the pipelines.
- **[Example Collection](./cookbook)**: Real use cases and best practices
---
## 🤝 Contribution
We believe the best memory systems come from collective wisdom. Contributions welcome 👉[Guide](docs/contribution.md):
### Code Contributions
- New operation and tool development
- Backend implementation and optimization
- API enhancements and new endpoints
### Documentation Improvements
- Usage examples and tutorials
- Best practice guides
---
## 📄 Citation
```bibtex
@software{ReMe2025,
title = {ReMe: Memory Management Framework for Agents},
author = {Li Yu, Jiaji Deng, Zouying Cao},
url = {https://github.com/modelscope/ReMe},
year = {2025}
}
```
---
## ⚖️ License
This project is licensed under the Apache License 2.0 - see the [LICENSE](./LICENSE) file for details.
---
## Star History
[](https://www.star-history.com/#modelscope/ReMe&Date)