An open API service indexing awesome lists of open source software.

https://github.com/modelscope/diffsynth-studio

Enjoy the magic of Diffusion models!
https://github.com/modelscope/diffsynth-studio

Last synced: 8 months ago
JSON representation

Enjoy the magic of Diffusion models!

Awesome Lists containing this project

README

          

# DiffSynth Studio
[![PyPI](https://img.shields.io/pypi/v/DiffSynth)](https://pypi.org/project/DiffSynth/)
[![license](https://img.shields.io/github/license/modelscope/DiffSynth-Studio.svg)](https://github.com/modelscope/DiffSynth-Studio/blob/master/LICENSE)
[![open issues](https://isitmaintained.com/badge/open/modelscope/DiffSynth-Studio.svg)](https://github.com/modelscope/DiffSynth-Studio/issues)
[![GitHub pull-requests](https://img.shields.io/github/issues-pr/modelscope/DiffSynth-Studio.svg)](https://GitHub.com/modelscope/DiffSynth-Studio/pull/)
[![GitHub latest commit](https://badgen.net/github/last-commit/modelscope/DiffSynth-Studio)](https://GitHub.com/modelscope/DiffSynth-Studio/commit/)


modelscope%2FDiffSynth-Studio | Trendshift

Document: https://diffsynth-studio.readthedocs.io/zh-cn/latest/index.html

## Introduction

Welcome to the magic world of Diffusion models!

DiffSynth consists of two open-source projects:
* [DiffSynth-Studio](https://github.com/modelscope/DiffSynth-Studio): Focused on aggressive technological exploration. Targeted at academia. Provides more cutting-edge technical support and novel inference capabilities.
* [DiffSynth-Engine](https://github.com/modelscope/DiffSynth-Engine): Focused on stable model deployment. Geared towards industry. Offers better engineering support, higher computational performance, and more stable functionality.

DiffSynth-Studio is an open-source project aimed at exploring innovations in AIGC technology. We have integrated numerous open-source Diffusion models, including FLUX and Wan, among others. Through this open-source project, we hope to connect models within the open-source community and explore new technologies based on diffusion models.

Until now, DiffSynth-Studio has supported the following models:

* [Wan-Video](https://github.com/Wan-Video/Wan2.1)
* [StepVideo](https://github.com/stepfun-ai/Step-Video-T2V)
* [HunyuanVideo](https://github.com/Tencent/HunyuanVideo), [HunyuanVideo-I2V]()
* [CogVideoX](https://huggingface.co/THUDM/CogVideoX-5b)
* [FLUX](https://huggingface.co/black-forest-labs/FLUX.1-dev)
* [ExVideo](https://huggingface.co/ECNU-CILab/ExVideo-SVD-128f-v1)
* [Kolors](https://huggingface.co/Kwai-Kolors/Kolors)
* [Stable Diffusion 3](https://huggingface.co/stabilityai/stable-diffusion-3-medium)
* [Stable Video Diffusion](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt)
* [Hunyuan-DiT](https://github.com/Tencent/HunyuanDiT)
* [RIFE](https://github.com/hzwer/ECCV2022-RIFE)
* [ESRGAN](https://github.com/xinntao/ESRGAN)
* [Ip-Adapter](https://github.com/tencent-ailab/IP-Adapter)
* [AnimateDiff](https://github.com/guoyww/animatediff/)
* [ControlNet](https://github.com/lllyasviel/ControlNet)
* [Stable Diffusion XL](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
* [Stable Diffusion](https://huggingface.co/runwayml/stable-diffusion-v1-5)

## News
- **March 31, 2025** We support InfiniteYou, an identity preserving method for FLUX. Please refer to [./examples/InfiniteYou/](./examples/InfiniteYou/) for more details.

- **March 25, 2025** 🔥🔥🔥 Our new open-source project, [DiffSynth-Engine](https://github.com/modelscope/DiffSynth-Engine), is now open-sourced! Focused on stable model deployment. Geared towards industry. Offers better engineering support, higher computational performance, and more stable functionality.

- **March 13, 2025** We support HunyuanVideo-I2V, the image-to-video generation version of HunyuanVideo open-sourced by Tencent. Please refer to [./examples/HunyuanVideo/](./examples/HunyuanVideo/) for more details.

- **February 25, 2025** We support Wan-Video, a collection of SOTA video synthesis models open-sourced by Alibaba. See [./examples/wanvideo/](./examples/wanvideo/).

- **February 17, 2025** We support [StepVideo](https://modelscope.cn/models/stepfun-ai/stepvideo-t2v/summary)! State-of-the-art video synthesis model! See [./examples/stepvideo](./examples/stepvideo/).

- **December 31, 2024** We propose EliGen, a novel framework for precise entity-level controlled text-to-image generation, complemented by an inpainting fusion pipeline to extend its capabilities to image inpainting tasks. EliGen seamlessly integrates with existing community models, such as IP-Adapter and In-Context LoRA, enhancing its versatility. For more details, see [./examples/EntityControl](./examples/EntityControl/).
- Paper: [EliGen: Entity-Level Controlled Image Generation with Regional Attention](https://arxiv.org/abs/2501.01097)
- Model: [ModelScope](https://www.modelscope.cn/models/DiffSynth-Studio/Eligen), [HuggingFace](https://huggingface.co/modelscope/EliGen)
- Online Demo: [ModelScope EliGen Studio](https://www.modelscope.cn/studios/DiffSynth-Studio/EliGen)
- Training Dataset: [EliGen Train Set](https://www.modelscope.cn/datasets/DiffSynth-Studio/EliGenTrainSet)

- **December 19, 2024** We implement advanced VRAM management for HunyuanVideo, making it possible to generate videos at a resolution of 129x720x1280 using 24GB of VRAM, or at 129x512x384 resolution with just 6GB of VRAM. Please refer to [./examples/HunyuanVideo/](./examples/HunyuanVideo/) for more details.

- **December 18, 2024** We propose ArtAug, an approach designed to improve text-to-image synthesis models through synthesis-understanding interactions. We have trained an ArtAug enhancement module for FLUX.1-dev in the format of LoRA. This model integrates the aesthetic understanding of Qwen2-VL-72B into FLUX.1-dev, leading to an improvement in the quality of generated images.
- Paper: https://arxiv.org/abs/2412.12888
- Examples: https://github.com/modelscope/DiffSynth-Studio/tree/main/examples/ArtAug
- Model: [ModelScope](https://www.modelscope.cn/models/DiffSynth-Studio/ArtAug-lora-FLUX.1dev-v1), [HuggingFace](https://huggingface.co/ECNU-CILab/ArtAug-lora-FLUX.1dev-v1)
- Demo: [ModelScope](https://modelscope.cn/aigc/imageGeneration?tab=advanced&versionId=7228&modelType=LoRA&sdVersion=FLUX_1&modelUrl=modelscope%3A%2F%2FDiffSynth-Studio%2FArtAug-lora-FLUX.1dev-v1%3Frevision%3Dv1.0), HuggingFace (Coming soon)

- **October 25, 2024** We provide extensive FLUX ControlNet support. This project supports many different ControlNet models that can be freely combined, even if their structures differ. Additionally, ControlNet models are compatible with high-resolution refinement and partition control techniques, enabling very powerful controllable image generation. See [`./examples/ControlNet/`](./examples/ControlNet/).

- **October 8, 2024.** We release the extended LoRA based on CogVideoX-5B and ExVideo. You can download this model from [ModelScope](https://modelscope.cn/models/ECNU-CILab/ExVideo-CogVideoX-LoRA-129f-v1) or [HuggingFace](https://huggingface.co/ECNU-CILab/ExVideo-CogVideoX-LoRA-129f-v1).

- **August 22, 2024.** CogVideoX-5B is supported in this project. See [here](/examples/video_synthesis/). We provide several interesting features for this text-to-video model, including
- Text to video
- Video editing
- Self-upscaling
- Video interpolation

- **August 22, 2024.** We have implemented an interesting painter that supports all text-to-image models. Now you can create stunning images using the painter, with assistance from AI!
- Use it in our [WebUI](#usage-in-webui).

- **August 21, 2024.** FLUX is supported in DiffSynth-Studio.
- Enable CFG and highres-fix to improve visual quality. See [here](/examples/image_synthesis/README.md)
- LoRA, ControlNet, and additional models will be available soon.

- **June 21, 2024.** We propose ExVideo, a post-tuning technique aimed at enhancing the capability of video generation models. We have extended Stable Video Diffusion to achieve the generation of long videos up to 128 frames.
- [Project Page](https://ecnu-cilab.github.io/ExVideoProjectPage/)
- Source code is released in this repo. See [`examples/ExVideo`](./examples/ExVideo/).
- Models are released on [HuggingFace](https://huggingface.co/ECNU-CILab/ExVideo-SVD-128f-v1) and [ModelScope](https://modelscope.cn/models/ECNU-CILab/ExVideo-SVD-128f-v1).
- Technical report is released on [arXiv](https://arxiv.org/abs/2406.14130).
- You can try ExVideo in this [Demo](https://huggingface.co/spaces/modelscope/ExVideo-SVD-128f-v1)!

- **June 13, 2024.** DiffSynth Studio is transferred to ModelScope. The developers have transitioned from "I" to "we". Of course, I will still participate in development and maintenance.

- **Jan 29, 2024.** We propose Diffutoon, a fantastic solution for toon shading.
- [Project Page](https://ecnu-cilab.github.io/DiffutoonProjectPage/)
- The source codes are released in this project.
- The technical report (IJCAI 2024) is released on [arXiv](https://arxiv.org/abs/2401.16224).

- **Dec 8, 2023.** We decide to develop a new Project, aiming to release the potential of diffusion models, especially in video synthesis. The development of this project is started.

- **Nov 15, 2023.** We propose FastBlend, a powerful video deflickering algorithm.
- The sd-webui extension is released on [GitHub](https://github.com/Artiprocher/sd-webui-fastblend).
- Demo videos are shown on Bilibili, including three tasks.
- [Video deflickering](https://www.bilibili.com/video/BV1d94y1W7PE)
- [Video interpolation](https://www.bilibili.com/video/BV1Lw411m71p)
- [Image-driven video rendering](https://www.bilibili.com/video/BV1RB4y1Z7LF)
- The technical report is released on [arXiv](https://arxiv.org/abs/2311.09265).
- An unofficial ComfyUI extension developed by other users is released on [GitHub](https://github.com/AInseven/ComfyUI-fastblend).

- **Oct 1, 2023.** We release an early version of this project, namely FastSDXL. A try for building a diffusion engine.
- The source codes are released on [GitHub](https://github.com/Artiprocher/FastSDXL).
- FastSDXL includes a trainable OLSS scheduler for efficiency improvement.
- The original repo of OLSS is [here](https://github.com/alibaba/EasyNLP/tree/master/diffusion/olss_scheduler).
- The technical report (CIKM 2023) is released on [arXiv](https://arxiv.org/abs/2305.14677).
- A demo video is shown on [Bilibili](https://www.bilibili.com/video/BV1w8411y7uj).
- Since OLSS requires additional training, we don't implement it in this project.

- **Aug 29, 2023.** We propose DiffSynth, a video synthesis framework.
- [Project Page](https://ecnu-cilab.github.io/DiffSynth.github.io/).
- The source codes are released in [EasyNLP](https://github.com/alibaba/EasyNLP/tree/master/diffusion/DiffSynth).
- The technical report (ECML PKDD 2024) is released on [arXiv](https://arxiv.org/abs/2308.03463).

## Installation

Install from source code (recommended):

```
git clone https://github.com/modelscope/DiffSynth-Studio.git
cd DiffSynth-Studio
pip install -e .
```

Or install from pypi (There is a delay in the update. If you want to experience the latest features, please do not use this installation method.):

```
pip install diffsynth
```

If you encounter issues during installation, it may be caused by the packages we depend on. Please refer to the documentation of the package that caused the problem.

* [torch](https://pytorch.org/get-started/locally/)
* [sentencepiece](https://github.com/google/sentencepiece)
* [cmake](https://cmake.org)
* [cupy](https://docs.cupy.dev/en/stable/install.html)

## Usage (in Python code)

The Python examples are in [`examples`](./examples/). We provide an overview here.

### Download Models

Download the pre-set models. Model IDs can be found in [config file](/diffsynth/configs/model_config.py).

```python
from diffsynth import download_models

download_models(["FLUX.1-dev", "Kolors"])
```

Download your own models.

```python
from diffsynth.models.downloader import download_from_huggingface, download_from_modelscope

# From Modelscope (recommended)
download_from_modelscope("Kwai-Kolors/Kolors", "vae/diffusion_pytorch_model.fp16.bin", "models/kolors/Kolors/vae")
# From Huggingface
download_from_huggingface("Kwai-Kolors/Kolors", "vae/diffusion_pytorch_model.fp16.safetensors", "models/kolors/Kolors/vae")
```

### Video Synthesis

#### Text-to-video using CogVideoX-5B

CogVideoX-5B is released by ZhiPu. We provide an improved pipeline, supporting text-to-video, video editing, self-upscaling and video interpolation. [`examples/video_synthesis`](./examples/video_synthesis/)

The video on the left is generated using the original text-to-video pipeline, while the video on the right is the result after editing and frame interpolation.

https://github.com/user-attachments/assets/26b044c1-4a60-44a4-842f-627ff289d006

#### Long Video Synthesis

We trained extended video synthesis models, which can generate 128 frames. [`examples/ExVideo`](./examples/ExVideo/)

https://github.com/modelscope/DiffSynth-Studio/assets/35051019/d97f6aa9-8064-4b5b-9d49-ed6001bb9acc

https://github.com/user-attachments/assets/321ee04b-8c17-479e-8a95-8cbcf21f8d7e

#### Toon Shading

Render realistic videos in a flatten style and enable video editing features. [`examples/Diffutoon`](./examples/Diffutoon/)

https://github.com/Artiprocher/DiffSynth-Studio/assets/35051019/b54c05c5-d747-4709-be5e-b39af82404dd

https://github.com/Artiprocher/DiffSynth-Studio/assets/35051019/20528af5-5100-474a-8cdc-440b9efdd86c

#### Video Stylization

Video stylization without video models. [`examples/diffsynth`](./examples/diffsynth/)

https://github.com/Artiprocher/DiffSynth-Studio/assets/35051019/59fb2f7b-8de0-4481-b79f-0c3a7361a1ea

### Image Synthesis

Generate high-resolution images, by breaking the limitation of diffusion models! [`examples/image_synthesis`](./examples/image_synthesis/).

LoRA fine-tuning is supported in [`examples/train`](./examples/train/).

|FLUX|Stable Diffusion 3|
|-|-|
|![image_1024_cfg](https://github.com/user-attachments/assets/984561e9-553d-4952-9443-79ce144f379f)|![image_1024](https://github.com/modelscope/DiffSynth-Studio/assets/35051019/4df346db-6f91-420a-b4c1-26e205376098)|

|Kolors|Hunyuan-DiT|
|-|-|
|![image_1024](https://github.com/modelscope/DiffSynth-Studio/assets/35051019/53ef6f41-da11-4701-8665-9f64392607bf)|![image_1024](https://github.com/modelscope/DiffSynth-Studio/assets/35051019/60b022c8-df3f-4541-95ab-bf39f2fa8bb5)|

|Stable Diffusion|Stable Diffusion XL|
|-|-|
|![1024](https://github.com/Artiprocher/DiffSynth-Studio/assets/35051019/6fc84611-8da6-4a1f-8fee-9a34eba3b4a5)|![1024](https://github.com/Artiprocher/DiffSynth-Studio/assets/35051019/67687748-e738-438c-aee5-96096f09ac90)|

## Usage (in WebUI)

Create stunning images using the painter, with assistance from AI!

https://github.com/user-attachments/assets/95265d21-cdd6-4125-a7cb-9fbcf6ceb7b0

**This video is not rendered in real-time.**

Before launching the WebUI, please download models to the folder `./models`. See [here](#download-models).

* `Gradio` version

```
pip install gradio
```

```
python apps/gradio/DiffSynth_Studio.py
```

![20240822102002](https://github.com/user-attachments/assets/59613157-de51-4109-99b3-97cbffd88076)

* `Streamlit` version

```
pip install streamlit streamlit-drawable-canvas
```

```
python -m streamlit run apps/streamlit/DiffSynth_Studio.py
```

https://github.com/Artiprocher/DiffSynth-Studio/assets/35051019/93085557-73f3-4eee-a205-9829591ef954