Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/mohamedhmini/iww

AI based web-wrapper for web-content-extraction
https://github.com/mohamedhmini/iww

ai data-mining information-extraction library python web-content-extractor web-data-extraction web-mining web-scraping

Last synced: about 2 months ago
JSON representation

AI based web-wrapper for web-content-extraction

Awesome Lists containing this project

README

        

# IWW-IntelliWebWrapper

![](/iww2.png)

[![GitHub license](https://img.shields.io/github/license/Naereen/StrapDown.js.svg)](https://github.com/Naereen/StrapDown.js/blob/master/LICENSE)
[![made-with-python](https://img.shields.io/badge/Made%20with-Python-1f425f.svg)](https://www.python.org/)
[![GitHub version](https://badge.fury.io/gh/Naereen%2FStrapDown.js.svg)](https://github.com/Naereen/StrapDown.js)
[![Generic badge](https://img.shields.io/badge/docs-passing-.svg)](https://shields.io/)
[![Ask Me Anything !](https://img.shields.io/badge/Ask%20me-anything-1abc9c.svg)](https://GitHub.com/Naereen/ama)

an AI based web-mining library for web-content-extraction using machine learning algorithms.

currently, the library offers many functionalities to be exploited & some interesting algos to look at:

- DOM extractor, mapper, reducer and flattening functionality...
- DoC, degree of coherence, a euclidean distance based similarity.
- LD, Lists detector algorithm.
- MCD, Main content detector algorithm.
- MCD algorithms results integrator method.
- CETD algorithm.
- DOM tags detector script (highlighting the chosen nodes).

P.S :
- the documentation isn't available yet.
- LD & MCD algorithms are to be released as a research article in the near future.
- the pip package of iww will be available online as soon as possible.

## USE CASE EXAMPLE :

### 1- extraction :

```python
from iww.extractor import extractor
from iww.detector import detector
from iww.features_extraction.lists_detector import Lists_Detector as LD
from iww.features_extraction.main_content_detector import MCD
```

```python
url = "https://www.theiconic.com.au/catalog/?q=kids%20sunglasses"
json_file = "./iconic.json"

extractor.extract(
url = url,
destination = json_file
)
```

### 2- data exploratory analysis :

```python
from iww.utils.dom_mapper import DOM_Mapper as DM

dm = DM()
dm.retrieve_DOM_tree("./iconic.json")
print("total number of nodes : {}".format(dm.DOM['CETD']['tagsCount']))
```
> total numbre of nodes : 2098

![](iww/test/webpage.PNG)

### 3- LD algorithm :

```python
ld = LD()
ld.retrieve_DOM_tree(file_path = "./iconic.json")
ld.apply(
node = ld.DOM,
coherence_threshold= (0.75,1),
sub_tags_threshold = 2
)
ld.update_DOM_tree()
```

```python
detector.detect(
input_file = "./iconic.json",
output_file = "./iconic_ld.png",
mark_path = "LISTS.mark",
mark_value = "1"
)
```

![](iww/test/ld.png)

### 4- MCD algorithm :

```python
mcd = MCD()
mcd.retrieve_DOM_tree("./iconic.json")
mcd.apply(
node = mcd.DOM,
min_ratio_threshold = 0.0,
nbr_nodes_threshold = 1
)
mcd.update_DOM_tree()
```

```python
detector.detect(
input_file = "./iconic.json",
output_file = "./iconic_mcd.png",
mark_path = "MCD.mark",
mark_value = "1"
)
```

![](iww/test/mcd.png)

### 5- LD/MCD integration (main list detection) :

```python
mcd.integrate_other_algorithms_results(
node = mcd.DOM,
nbr_nodes = 1,
mode = "ancestry",
condition_features = [("LISTS.mark","1")])

mcd.update_DOM_tree()
```

```python
detector.detect(
input_file = "./iconic.json",
output_file = "./iconic_main_list.png",
mark_path = "MCD.main_node",
mark_value = "1"
)
```

![](iww/test/main_list.png)

## License
[MIT](https://choosealicense.com/licenses/mit/)

**MOHAMED-HMINI 2019**