Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mohd-faizy/05p_understanding_deepfakes_with_keras_using_dcgan
Understanding Deepfakes with Keras
https://github.com/mohd-faizy/05p_understanding_deepfakes_with_keras_using_dcgan
convolutional-neural-networks dcgan deepfakes generative-adversarial-network
Last synced: 24 days ago
JSON representation
Understanding Deepfakes with Keras
- Host: GitHub
- URL: https://github.com/mohd-faizy/05p_understanding_deepfakes_with_keras_using_dcgan
- Owner: mohd-faizy
- Created: 2020-07-08T16:42:42.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2020-11-13T21:27:16.000Z (about 4 years ago)
- Last Synced: 2024-11-13T09:47:16.684Z (3 months ago)
- Topics: convolutional-neural-networks, dcgan, deepfakes, generative-adversarial-network
- Language: Jupyter Notebook
- Homepage:
- Size: 42 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# __Understanding-Deepfakes-with-Keras-Using-DCGAN__
## __Dataset__
__MNIST__(Modified National Institute of Standards and Technology database)```python
# Downloding the dataset
(x_train, y_train), (x_test, y_test) = tfutils.datasets.mnist.load_data(one_hot=False)# Loading the Subsets that belong to the class zero
# So the x_train, x_test have the images of only '0'
x_train = tfutils.datasets.mnist.load_subset([0], x_train, y_train)
x_test = tfutils.datasets.mnist.load_subset([0], x_test, y_test)# Creating the Combined set Using the NumPy Concatenate function
x = np.concatenate([x_train, x_test], axis=0)
```## :heavy_check_mark: Objectives
:one: Implement a Deep Convolutional Generative Adversarial Network (DCGAN).
:two: Train a DCGAN to synthesize realistic looking images.By the end of this course, you will understand how to implement DCGANs, and how to train them to generate realistic synthetic images.
## Task 1: Introduction
- Introduction to the DCGANS
## Task 2: Importing and Plotting the Data
- Importing the MNIST Dataset
- Creating a subset of the dataset for just one class.
- Visualizing the subset.## Task 3: Discriminator
- Basic understanding of how a GAN works.
- Creating a Discriminator Network.
- Creating an optimizer instance.## Task 4: Generator
- Creating a Generator Network.
- Generating a new image from the untrained Generator model.## Task 5: Generative Adversarial Network (GAN)
- Connecting the Generator and Discriminator to create a Generative Adversarial Network (GAN)
## Task 6: Training the GAN
- Creating a training loop.
- Creating a dynamic plot that displays generated images after each epoch.
---### Connect with me:
[][twitter]
[][linkedin]
[][StackExchange AI][twitter]: https://twitter.com/F4izy
[linkedin]: https://www.linkedin.com/in/faizy-mohd-836573122/
[StackExchange AI]: https://ai.stackexchange.com/users/36737/cypher---
![Faizy's github stats](https://github-readme-stats.vercel.app/api?username=mohd-faizy&show_icons=true)
[![Top Langs](https://github-readme-stats.vercel.app/api/top-langs/?username=mohd-faizy&layout=compact)](https://github.com/mohd-faizy/github-readme-stats)