Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/mohd-faizy/05p_understanding_deepfakes_with_keras_using_dcgan

Understanding Deepfakes with Keras
https://github.com/mohd-faizy/05p_understanding_deepfakes_with_keras_using_dcgan

convolutional-neural-networks dcgan deepfakes generative-adversarial-network

Last synced: 24 days ago
JSON representation

Understanding Deepfakes with Keras

Awesome Lists containing this project

README

        

# __Understanding-Deepfakes-with-Keras-Using-DCGAN__

## __Dataset__
__MNIST__(Modified National Institute of Standards and Technology database)

```python

# Downloding the dataset
(x_train, y_train), (x_test, y_test) = tfutils.datasets.mnist.load_data(one_hot=False)

# Loading the Subsets that belong to the class zero
# So the x_train, x_test have the images of only '0'
x_train = tfutils.datasets.mnist.load_subset([0], x_train, y_train)
x_test = tfutils.datasets.mnist.load_subset([0], x_test, y_test)

# Creating the Combined set Using the NumPy Concatenate function
x = np.concatenate([x_train, x_test], axis=0)
```

## :heavy_check_mark: Objectives

:one: Implement a Deep Convolutional Generative Adversarial Network (DCGAN).

:two: Train a DCGAN to synthesize realistic looking images.

By the end of this course, you will understand how to implement DCGANs, and how to train them to generate realistic synthetic images.

## Task 1: Introduction

- Introduction to the DCGANS

## Task 2: Importing and Plotting the Data

- Importing the MNIST Dataset
- Creating a subset of the dataset for just one class.
- Visualizing the subset.

## Task 3: Discriminator

- Basic understanding of how a GAN works.
- Creating a Discriminator Network.
- Creating an optimizer instance.

## Task 4: Generator

- Creating a Generator Network.
- Generating a new image from the untrained Generator model.

## Task 5: Generative Adversarial Network (GAN)

- Connecting the Generator and Discriminator to create a Generative Adversarial Network (GAN)

## Task 6: Training the GAN

- Creating a training loop.
- Creating a dynamic plot that displays generated images after each epoch.

---

### Connect with me:

[codeSTACKr | Twitter][twitter]
[codeSTACKr | LinkedIn][linkedin]
[codeSTACKr.com][StackExchange AI]

[twitter]: https://twitter.com/F4izy
[linkedin]: https://www.linkedin.com/in/faizy-mohd-836573122/
[StackExchange AI]: https://ai.stackexchange.com/users/36737/cypher

---

![Faizy's github stats](https://github-readme-stats.vercel.app/api?username=mohd-faizy&show_icons=true)

[![Top Langs](https://github-readme-stats.vercel.app/api/top-langs/?username=mohd-faizy&layout=compact)](https://github.com/mohd-faizy/github-readme-stats)