An open API service indexing awesome lists of open source software.

https://github.com/moindalvs/neural_network_regression_gas_turbines

Predicting Turbine Energy Yield (TEY) using ambient variables as features.
https://github.com/moindalvs/neural_network_regression_gas_turbines

activation-functions dropout-keras dropout-layers hyperparameter-optimization hyperparameter-tuning keras-neural-networks neural-networks neurons regression weights-and-biases

Last synced: about 1 month ago
JSON representation

Predicting Turbine Energy Yield (TEY) using ambient variables as features.

Awesome Lists containing this project

README

        

## **Problem Statement**
# Predicting Turbine Energy Yield (TEY) using ambient variables as features.

### About Dataset

The dataset contains 36733 instances of 11 sensor measures aggregated over one hour (by means of average or sum) from a gas turbine.
The Dataset includes gas turbine parameters (such as Turbine Inlet Temperature and Compressor Discharge pressure) in addition to the ambient variables.

Attribute Information:

The explanations of sensor measurements and their brief statistics are given below.

|Variable|(Abbrivation)|Unit|Min|Max|Mean|
|:------|:------:|:------|:------|:------|:------|
|Ambient temperature |(AT)| C| 6.23| 37.10| 17.71|
|Ambient pressure |(AP)| mbar |985.85 |1036.56 |1013.07|
|Ambient humidity |(AH)| (%) |24.08 |100.20 |77.87|
|Air filter difference pressure |(AFDP)| mbar |2.09 |7.61 |3.93|
|Gas turbine exhaust pressure |(GTEP)| mbar |17.70 |40.72 |25.56|
|Turbine inlet temperature |(TIT)| C |1000.85 |1100.89 |1081.43|
|Turbine after temperature |(TAT)| C |511.04 |550.61 |546.16|
|Compressor discharge pressure |(CDP)| mbar |9.85 |15.16 |12.06|
|Turbine energy yield |(TEY)| MWH |100.02 |179.50 |133.51|
|Carbon monoxide |(CO)| mg/m3 |0.00 |44.10 |2.37|
|Nitrogen oxides |(NOx)| mg/m3 |25.90 |119.91 |65.29|