https://github.com/moindalvs/neural_network_regression_gas_turbines
Predicting Turbine Energy Yield (TEY) using ambient variables as features.
https://github.com/moindalvs/neural_network_regression_gas_turbines
activation-functions dropout-keras dropout-layers hyperparameter-optimization hyperparameter-tuning keras-neural-networks neural-networks neurons regression weights-and-biases
Last synced: about 1 month ago
JSON representation
Predicting Turbine Energy Yield (TEY) using ambient variables as features.
- Host: GitHub
- URL: https://github.com/moindalvs/neural_network_regression_gas_turbines
- Owner: MoinDalvs
- Created: 2022-07-09T07:32:42.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2022-07-09T07:38:45.000Z (almost 3 years ago)
- Last Synced: 2025-04-23T22:55:28.430Z (about 1 month ago)
- Topics: activation-functions, dropout-keras, dropout-layers, hyperparameter-optimization, hyperparameter-tuning, keras-neural-networks, neural-networks, neurons, regression, weights-and-biases
- Language: Jupyter Notebook
- Homepage:
- Size: 2.53 MB
- Stars: 5
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
## **Problem Statement**
# Predicting Turbine Energy Yield (TEY) using ambient variables as features.### About Dataset
The dataset contains 36733 instances of 11 sensor measures aggregated over one hour (by means of average or sum) from a gas turbine.
The Dataset includes gas turbine parameters (such as Turbine Inlet Temperature and Compressor Discharge pressure) in addition to the ambient variables.Attribute Information:
The explanations of sensor measurements and their brief statistics are given below.
|Variable|(Abbrivation)|Unit|Min|Max|Mean|
|:------|:------:|:------|:------|:------|:------|
|Ambient temperature |(AT)| C| 6.23| 37.10| 17.71|
|Ambient pressure |(AP)| mbar |985.85 |1036.56 |1013.07|
|Ambient humidity |(AH)| (%) |24.08 |100.20 |77.87|
|Air filter difference pressure |(AFDP)| mbar |2.09 |7.61 |3.93|
|Gas turbine exhaust pressure |(GTEP)| mbar |17.70 |40.72 |25.56|
|Turbine inlet temperature |(TIT)| C |1000.85 |1100.89 |1081.43|
|Turbine after temperature |(TAT)| C |511.04 |550.61 |546.16|
|Compressor discharge pressure |(CDP)| mbar |9.85 |15.16 |12.06|
|Turbine energy yield |(TEY)| MWH |100.02 |179.50 |133.51|
|Carbon monoxide |(CO)| mg/m3 |0.00 |44.10 |2.37|
|Nitrogen oxides |(NOx)| mg/m3 |25.90 |119.91 |65.29|