https://github.com/moindalvs/simple_linear_regression_1
Predicting Delivery Time Using Sorting Time
https://github.com/moindalvs/simple_linear_regression_1
aic bic data-transformation f-statistics likelihood log-transformation matplotlib numpy ols-regression ordinary-least-squares pandas-dataframe pandas-library prediction predictive-modeling residuals rmse-score simple-linear-regression sklearn sklearn-library
Last synced: about 2 months ago
JSON representation
Predicting Delivery Time Using Sorting Time
- Host: GitHub
- URL: https://github.com/moindalvs/simple_linear_regression_1
- Owner: MoinDalvs
- Created: 2022-03-19T10:44:56.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2022-03-24T13:26:19.000Z (about 3 years ago)
- Last Synced: 2025-01-18T00:43:54.136Z (4 months ago)
- Topics: aic, bic, data-transformation, f-statistics, likelihood, log-transformation, matplotlib, numpy, ols-regression, ordinary-least-squares, pandas-dataframe, pandas-library, prediction, predictive-modeling, residuals, rmse-score, simple-linear-regression, sklearn, sklearn-library
- Language: Jupyter Notebook
- Homepage:
- Size: 1.76 MB
- Stars: 1
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Simple_Linear_Regression_1
## Predicting Delivery Time Using Sorting Time
### Step 1 Importing Data
### Step 2 Performing EDA On Data
#### a.) Renaming columns
#### b.) Checking Datatype
#### c.) Checking for Null Values
#### d.) Checking for Duplicate Values
### Step 3 Plotting the data to check for outliers
### Step 4 Checking the Correlation between variables
### Step 5 Checking for Homoscedasticity or Hetroscedasticity
### Step 6 Feature Engineering
#### a.) Trying different transformation of data to estimate normal distribution and to remove any skewness
### Step 7 Fitting a Linear Regression Model
#### a.) Using Ordinary least squares (OLS) regression
#### b.) Square Root transformation on data
#### c.) Cube Root transformation on Data
#### d.) Log transformation on Data
### Step 8 Residual Analysis
#### a.) Test for Normality of Residuals (Q-Q Plot)
#### b.) Residual Plot to check Homoscedasticity or Hetroscedasticity
### Step 9 Model Validation
#### a.) Comparing different models with respect to their Root Mean Squared Errors
### Step 10 Predicting values from Model with Log Transformation on the Data