An open API service indexing awesome lists of open source software.

https://github.com/moindalvs/simple_linear_regression_1

Predicting Delivery Time Using Sorting Time
https://github.com/moindalvs/simple_linear_regression_1

aic bic data-transformation f-statistics likelihood log-transformation matplotlib numpy ols-regression ordinary-least-squares pandas-dataframe pandas-library prediction predictive-modeling residuals rmse-score simple-linear-regression sklearn sklearn-library

Last synced: about 2 months ago
JSON representation

Predicting Delivery Time Using Sorting Time

Awesome Lists containing this project

README

        

# Simple_Linear_Regression_1
## Predicting Delivery Time Using Sorting Time
### Step 1 Importing Data
### Step 2 Performing EDA On Data
#### a.) Renaming columns
#### b.) Checking Datatype
#### c.) Checking for Null Values
#### d.) Checking for Duplicate Values
### Step 3 Plotting the data to check for outliers
### Step 4 Checking the Correlation between variables
### Step 5 Checking for Homoscedasticity or Hetroscedasticity
### Step 6 Feature Engineering
#### a.) Trying different transformation of data to estimate normal distribution and to remove any skewness
### Step 7 Fitting a Linear Regression Model
#### a.) Using Ordinary least squares (OLS) regression
#### b.) Square Root transformation on data
#### c.) Cube Root transformation on Data
#### d.) Log transformation on Data
### Step 8 Residual Analysis
#### a.) Test for Normality of Residuals (Q-Q Plot)
#### b.) Residual Plot to check Homoscedasticity or Hetroscedasticity
### Step 9 Model Validation
#### a.) Comparing different models with respect to their Root Mean Squared Errors
### Step 10 Predicting values from Model with Log Transformation on the Data