Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/moindalvs/simple_linear_regression_2
Building a prediction model for Salary hike using Years of Experience
https://github.com/moindalvs/simple_linear_regression_2
data-transformation log-transformation ols-regression ordinary-least-squares prediction-model scipy-stats simple-linear-regression sklearn-library
Last synced: about 8 hours ago
JSON representation
Building a prediction model for Salary hike using Years of Experience
- Host: GitHub
- URL: https://github.com/moindalvs/simple_linear_regression_2
- Owner: MoinDalvs
- Created: 2022-03-19T10:49:52.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2022-03-21T18:01:01.000Z (almost 3 years ago)
- Last Synced: 2024-11-17T05:27:59.936Z (2 months ago)
- Topics: data-transformation, log-transformation, ols-regression, ordinary-least-squares, prediction-model, scipy-stats, simple-linear-regression, sklearn-library
- Language: Jupyter Notebook
- Homepage:
- Size: 1.37 MB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Simple_Linear_regression_2
## Building a prediction model for Salary hike
### Building a simple linear regression model by performing EDA and do necessary transformations and select the best model using R or Python.### Step 1 Importing Data
### Step 2 Performing EDA On Data
#### a.) Checking Datatype
#### b.) Checking for Null Values
#### c.) Checking for Duplicate Values
### Step 3 Plotting the data to check for outliers
### Step 4 Checking the Correlation between variables
### Step 5 Checking for Homoscedasticity or Hetroscedasticity
### Step 6 Feature Engineering
#### a.) Trying different transformation of data to estimate normal distribution and to remove any skewness
### Step 7 Fitting a Linear Regression Model
#### a.) Using Ordinary least squares (OLS) regression
#### b.) Square Root transformation on data
#### c.) Cube Root transformation on Data
#### d.) Log transformation on Data
### Step 8 Residual Analysis
#### a.) Test for Normality of Residuals (Q-Q Plot)
#### b.) Residual Plot to check Homoscedasticity or Hetroscedasticity
### Step 9 Model Validation
#### a.) Comparing different models with respect to their Root Mean Squared Errors
### Step 10 Predicting values from Model with Log Transformation on the Data