Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/molodchina/msu-ml-prac

MSU-CMC-SP Machine Learning practicum
https://github.com/molodchina/msu-ml-prac

clustering decision-trees encodings ensemble gradient-boosting knn machine-learning matplotlib numpy pandas plotly seaborn svm

Last synced: 28 days ago
JSON representation

MSU-CMC-SP Machine Learning practicum

Awesome Lists containing this project

README

        

# MSU-ML-Prac

This repository is devoted to **Machine Learning MSU Practicum**.

**Mastered themes:**
1. Handling **tabular data** using the **Pandas** library, visualization using the **Matplotlib** library, **Seaborn**, **Plotly**,
2. **Vector computation** using the **NumPy** library,
3. **K Nearest Neighbors (KNN)** algorithm for solving **classification** and **regression** tasks,
4. **Linear models**
- **Overtraining** experience,
- **Dealing** with **overtraining**,
- **Regularization** Techniques,
- **Regression** issue.
5. **Preprocessing** categorical features:
- **One-Hot** Encoding,
- **Count** Encoding.
6. **Support Vector Machine (SVM)**:
- Plotting of **nonlinear decision boundary**,
- **Optimal selection** of the **hyperparameter**,
- **Principal Component Analysis (PCA)** for dimensionality reduction,
- The **Posterior Probability** for SVM,
- **Solving ML task**, , the task was solved with the use of ***ensemble learning***.
7. **Decision Trees**:
> Used to predict the *real estate prices in California*, using **RandomForestRegressor**, **ExtraTreesRegressor** and **LinearSVR**
- Training, predicting and visualizing **DecisionTreeRegressor**,
- Improving prediction result using **Ensemble learning**, including testing **stacking**, **bagging** and **boosting** techniques,
- **Transforming** multidimensional matrix into 1d-vectors,
- **Pipeline** use to chain multiple estimators into one,
- **GridSearchCV** use to tune the hyper-parameters of an estimator,
- **Solving ML tasks**, *predict the value of some energy for each physical potential*, using the ExtraTreesRegressor, the task was solved with the use of ***PotentialTransformer*** and ***data preprocessing*** (centering).
8. **Gradient Boosting**:
> Used to predict the *price of used cars in a number of countries*, using **XGBoost**, **LightGBM**, **Catboost**, **HyperOpt**,
- **Dataset preprocess**: missing values replaces with average ones, cells separation, feature selection and encoding
- **Hyperopt** use to tune the hyper-parameters of an estimator,
- **Solving ML tasks**, *predict the number of awards for the film*, the task was solved with the use of ***ensemble learning***.
9. **Clusterization**:
- **Unsupervised machine learning methods** — **clustering** and **dimensionality reduction**.
- **PyTorch** and **Tensorflow** use,
- Using the dimensionality reduction algorithms **TSNE**, **UMAP**, **Isomap**, **KernelPCA**,
- Using **Transfer Learning** to transform to more representative feature space, where objects will be located in a variety that is easier to represent.

## Project Tree
```
.
├── Clustarization
│ └── clusterization.ipynb
├── Decision Trees
│ ├── decision_trees.ipynb
│ ├── decision_trees_ml.py
│ └── decision_trees_unit-tests.py
├── Gradient Boosting
│ ├── gradient_boosting.ipynb
│ └── gradient_boosting_ml.py
├── KNN
│ ├── cross_val.py
│ ├── KNN_2023.ipynb
│ └── scalers.py
├── Linear Models: classification
│ ├── Linear_Models_classification .ipynb
│ └── Task.py
├── Linear Models: regression
│ └── Linear_Models_regression.ipynb
├── numpy-pandas-matplotlib
│ ├── functions.py
│ ├── functions_vectorised.py
│ └── Numpy_pandas_matplotlib.ipynb
├── Python Introduction
│ ├── task15.py
│ ├── task6.py
│ └── task7.py
├── README.md
└── SVM
├── SVM.ipynb
└── svm_solution.py
```