Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mongodb-developer/google-cloud-sentiment-chef
Sentiment Analysis, Summarization, Tagging with MongoDB Atlas and Gemini — Google Cloud's AI model
https://github.com/mongodb-developer/google-cloud-sentiment-chef
gemini gemini-pro gemini-pro-vision mongodb mongodb-atlas multimodal-sentiment-analysis
Last synced: 10 days ago
JSON representation
Sentiment Analysis, Summarization, Tagging with MongoDB Atlas and Gemini — Google Cloud's AI model
- Host: GitHub
- URL: https://github.com/mongodb-developer/google-cloud-sentiment-chef
- Owner: mongodb-developer
- License: apache-2.0
- Created: 2023-06-21T09:24:00.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-06-20T08:55:20.000Z (5 months ago)
- Last Synced: 2024-06-20T22:16:22.800Z (5 months ago)
- Topics: gemini, gemini-pro, gemini-pro-vision, mongodb, mongodb-atlas, multimodal-sentiment-analysis
- Language: TypeScript
- Homepage:
- Size: 206 KB
- Stars: 9
- Watchers: 3
- Forks: 3
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Generative AI Sentiment Analysis and Summarization
This is a demo of a sentiment analysis, tagging, and summarization Gemini — Google's next-generation AI model.
## Quickstart
### Google Cloud setup
Create two public 2nd generation Cloud Functions with the following implementations.1. [Analyze sentiment Google Cloud Function](./google-cloud-functions/analyze-sentiment/)
1. [Summarize reviews Google Cloud Function](./google-cloud-functions/summarize-review-sentiment/)Take a note of the deployed functions' URLs. You will need them later.
### MongoDB Atlas setup
1. Create a [free MongoDB Atlas account](https://mongodb.com/try?utm_campaign=devrel&utm_source=google.cloud&utm_medium=github&utm_content=sentiment.chef&utm_term=stanimira.vlaeva).
1. Database cluster
- Deploy a new MongoDB database cluster in your Atlas account. You can use the free M0 tier for this demo.
- Load the sample dataset.
1. Data API
- Enable the Data API for your newly deployed cluster.
- Set the `readAll` data access rule for the `sample_restaurants.restaurants` collection.
1. Atlas Functions
- Create two new Atlas Functions with the following implementations. Replace the URL placeholders with the URls of the deployed Google Cloud Functions.
- [Analyze sentiment Atlas Function](./atlas-app-services/functions/Atlas_Triggers_analyzeReviewSentiment_1686394580.js)
- [Summarize reviews Atlas Function](./atlas-app-services/functions/Atlas_Triggers_summarizeReviewsSentiment_1686475894.js)
1. Atlas Triggers
- Create two new Atlas Triggers with the following configuration.
- [Analyze sentiment Atlas Trigger](./atlas-app-services/triggers/analyzeReviewSentiment.json)
- [Summarize reviews Atlas Trigger](./atlas-app-services/triggers/summarizeReviewsSentiment.json)## Contributors ✨
## Disclaimer
Use at your own risk; not a supported MongoDB product