Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/mongoid/mongoid_search

Simple full text search for Mongoid ORM
https://github.com/mongoid/mongoid_search

Last synced: 17 days ago
JSON representation

Simple full text search for Mongoid ORM

Awesome Lists containing this project

README

        

# Mongoid Search

Mongoid Search is a simple full text search implementation for Mongoid ORM. It supports Mongoid 3, 4, 5 and 6 and performs well for small data sets. If your searchable model is big (i.e. 1.000.000+ records), [mongoid_fulltext](https://github.com/mongoid/mongoid_fulltext), ElasticSearch, Solr or Sphinx may suit you better.

[![Build Status](https://travis-ci.org/mongoid/mongoid_search.svg?branch=master)](https://travis-ci.org/mongoid/mongoid_search)

## Installation

In your Gemfile:

```ruby
gem 'mongoid_search'
```

Then:

```
bundle install
```

## Examples

```ruby
class Product
include Mongoid::Document
include Mongoid::Search
field :brand
field :name
field :unit
field :info, type: Hash

has_many :tags
belongs_to :category

search_in :brand, :name, tags: :name, category: :name, info: %i[summary description]
search_in :unit, index: :_unit_keywords
end

class Tag
include Mongoid::Document
field :name

belongs_to :product
end

class Category
include Mongoid::Document
field :name

has_many :products
end
```

Now when you save a product, you get a `_keywords` field automatically:

```ruby
p = Product.new brand: 'Apple', name: 'iPhone', unit: 'kilogram', info: { summary: 'Info-summary', description: 'Info-description' }
p.tags << Tag.new(name: 'Amazing')
p.tags << Tag.new(name: 'Awesome')
p.tags << Tag.new(name: 'Superb')
p.save
# => true
p._keywords
# => ["amazing", "apple", "awesome", "iphone", "superb", "Info-summary", "Info-description"]
p._unit_keywords
# => ["kilogram"]
```

Now you can run search, which will look in the `_keywords` field and return all matching results:

```ruby
Product.full_text_search("apple iphone").size
# => 1
```

You can also search in "virtual" fields by defining them as methods. This can be useful when you have a method with dynamic fields (i.e. variable schema).
```ruby
class ModelWithDynamicFields

...

search_in :search_data

def search_data
# concatenate all String fields' values
self.attributes.select{|k,v| v.is_a?(String) }.values.join(' ')
end
end
```
Mongoid_search will run the method before save and use it's output to populate the `_keywords` field.

Of course, some models could have more than one index. For instance, two different searches with different fields, so you could even specify from which index should be searched:

```ruby
Product.full_text_search("kilogram", index: :_unit_keywords).size
# => 1
```

Note that the search is case insensitive, and accept partial searching too:

```ruby
Product.full_text_search('ipho').size
# => 1
```

Assuming you have a category with multiple products you can use the following code to search for 'iphone' in products cheaper than $499.

```ruby
category.products.where(:price.lt => 499).full_text_search('iphone').asc(:price)
```

To index or reindex all existing records, run this rake task

```
$ rake mongoid_search:index
```

## Options

### match

* `:any` - match any occurrence
* `:all` - match all occurrences

Default is `:any`.

```ruby
Product.full_text_search('apple motorola', match: :any).size
# => 1

Product.full_text_search('apple motorola', match: :all).size
# => 0
```

### allow\_empty\_search

* `true` - will return `Model.all`
* `false` - will return `[]`

Default is `false`.

```ruby
Product.full_text_search('', allow_empty_search: true).size
# => 1
```

### relevant_search

* `true` - adds relevance information to the results
* `false` - no relevance information

Default is `false`.

```ruby
Product.full_text_search('amazing apple', relevant_search: true)
# => [#]
```

Please note that relevant_search will return an Array and not a Criteria object. The search method should always be called in the end of the method chain.

### index

Default is `_keywords`.

```ruby
Product.full_text_search('amazing apple', index: :_keywords)
# => [#]

Product.full_text_search('kg', index: :_unit_keywords)
# => [#]
```

index enables to have two or more different searches, with different or same fields. It should be noted that indexes are exclusive per each one.

## Initializer

Alternatively, you can create an initializer to setup those options:

```ruby
Mongoid::Search.setup do |config|
## Default matching type. Match :any or :all searched keywords
config.match = :any

## If true, an empty search will return all objects
config.allow_empty_search = false

## If true, will search with relevance information
config.relevant_search = false

## Stem keywords
config.stem_keywords = false

## Add a custom proc returning strings to replace the default stemmer
# For example using ruby-stemmer:
# config.stem_proc = Proc.new { |word| Lingua.stemmer(word, :language => 'nl') }

## Words to ignore
config.ignore_list = []

## An array of words
# config.ignore_list = %w{ a an to from as }

## Or from a file
# config.ignore_list = YAML.load(File.open(File.dirname(__FILE__) + '/config/ignorelist.yml'))["ignorelist"]

## Search using regex (slower)
config.regex_search = true

## Regex to search

## Match partial words on both sides (slower)
config.regex = Proc.new { |query| /#{query}/ }

## Match partial words on the beginning or in the end (slightly faster)
# config.regex = Proc.new { |query| /^#{query}/ }
# config.regex = Proc.new { |query| /#{query}$/ }

# Ligatures to be replaced
# http://en.wikipedia.org/wiki/Typographic_ligature
config.ligatures = { "œ"=>"oe", "æ"=>"ae" }

# Strip symbols regex to be replaced. These symbols will be replaced by space
config.strip_symbols = /[._:;'\"`,?|+={}()!@#%^&*<>~\$\-\\\/\[\]]/

# Strip accents regex to be replaced. These sybols will be removed after strip_symbols replacing
config.strip_accents = /[^\s\p{Alnum}]/

# Minimum word size. Words smaller than it won't be indexed
config.minimum_word_size = 2
end
```