Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/monika76five/Undergrad-Bayesian-Course
https://github.com/monika76five/Undergrad-Bayesian-Course
Last synced: 3 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/monika76five/Undergrad-Bayesian-Course
- Owner: monika76five
- Created: 2019-08-22T02:42:48.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2020-11-21T22:41:25.000Z (almost 4 years ago)
- Last Synced: 2024-05-31T21:02:21.198Z (6 months ago)
- Language: TeX
- Size: 8.79 MB
- Stars: 60
- Watchers: 4
- Forks: 28
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# An Undergraduate Bayesian Statistics Course
- Textbook: Probability and Bayesian Modeling (1st Edition), Albert and Hu, Chapman & Hall/CRC Texts in Statistical Science.
- [Book website](https://monika76five.github.io/ProbBayes/)
- [CRC Page for the Book](https://www.crcpress.com/Probability-and-Bayesian-Modeling/Albert-Hu/p/book/9781138492561)- Computing resources
- The ProbBayes R package
- Installing from CRAN link
```{r, eval = FALSE}
install.packages("ProbBayes")
library(ProbBayes)
```
- Installing from Github
```{r, eval = FALSE}
devtools::install_github("bayesball/ProbBayes")
require(ProbBayes)
```
- JAGS (Just Another Gibbs Sampler)
- Downloading and installing: [sourceforge link](https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/)
- The runjags R package
```{r, eval = FALSE}
install.packages("runjags")
require(runjags)
```
- Pre-requisites- Coursework: college-level Multivariate Calculus, Linear Algebra, and Probability
- Computing in R: equivalent to DataCamp's
- Introduction to R: [DataCamp link](https://www.datacamp.com/courses/free-introduction-to-r)
- Intermediate R: [DataCamp link](https://www.datacamp.com/courses/intermediate-r)
- Introduction to the Tidyverse: [DataCamp link](https://www.datacamp.com/courses/introduction-to-the-tidyverse)- Teaching and learning material (Fall 2019 iteration of MATH 347 Bayesian Statistics at Vassar College, NY)
- Lectures folder: lecture files (.Rmd and .pdf).
- Homework folder: homework files (.tex and .pdf).
- Labs folder: lab files (.Rmd and .pdf).
- Case Studies folder: case study files (.tex and .pdf).
- Lecture recordings available at [this complete YouTube playlist](https://www.youtube.com/playlist?list=PL_lWxa4iVNt1TfbsAfv9aW_5KL9rZuAtr).