Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/monk1337/multilab

State of art Framework for Multi-label classification
https://github.com/monk1337/multilab

classification deep-learning keras machine-learning multi-label-classification tensorflow tensorflow-models tensorflow-tutorials text-classification text-processing

Last synced: 3 months ago
JSON representation

State of art Framework for Multi-label classification

Awesome Lists containing this project

README

        

MultiLab


A framework for Multi-label classification, Classical machine learning models to state of art deep learning models for multi label classification, preprocessing Multi-label datasets and load benchmark multi-label datasets, metrices for accuracy calculation

You can preprocess multilabel dataset simply as follows:
```python

from multilab.preprocess import Text_preprocessing

tp = Text_preprocessing()
preprocessded_dataset = tp.initial_preprocess(dataframe, chunk_value = 5)

```

### Loading traditional Models

```python
from multilab.models import BinaryRe

Bm = BinaryRe(x_train, y_train, x_test,y_test)
print(Bm.train())
```

output :

```python

{'accuracy': 0.4074074074074074, 'f1_score': 0.4395604395604396}
```

### Loading Bilstm model

```python
from multilab.models import Bilstm

config = {
'vocab_size' : 7000,
'no_of_labels' : 9,
'rnn_units' : 256,
'word_embedding_dim' : 300,
'learning_rate' : 0.001,
'pretrained_embedding_matrix': None,
'dropout' : 0.2,
'epoch' : 5,
'batch_size' : 128,
'result_path' : '/Users/aaditya/Desktop',
'last_output' : False,
'train_embedding' : True
}

bl = Bilstm(x_train, y_train, x_test,y_test, config)
bl.train()
```

output

```python
validation_acc {'subset_accuracy': 0.45166666666666666, 'hamming_score': 0.4601111111111112, 'hamming_loss': 0.1285185185185185, 'micro_ac': 0.4490395710185522, 'weight_ac': 0.2830056188426279, 'epoch': 0}
```

### Loading Elmo model

```python
from multilab.models import Elmo

config = {
'no_of_labels' : 9,
'learning_rate' : 0.001,
'epoch' : 5,
'batch_size' : 128,
'model_type' : 'base',
'result_path' : '.'
}

elmo_model = Elmo(x_train, y_train, x_test,y_test, config)
elmo_model.train()

```

output

```python
validation_acc {'subset_accuracy': 0.5966666666666666, 'hamming_score': 0.6, 'hamming_loss': 0.05907407407407408, 'micro_ac': 0.6943641132818982, 'weight_ac': 0.5731481624223015, 'epoch': 0}
```

##### adding more models, work in progress..