Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mosecorg/numbin
An efficient binary serialization format for numerical data.
https://github.com/mosecorg/numbin
deep-learning hacktoberfest machine-learning numpy python scientific-computing serialization
Last synced: 2 months ago
JSON representation
An efficient binary serialization format for numerical data.
- Host: GitHub
- URL: https://github.com/mosecorg/numbin
- Owner: mosecorg
- License: apache-2.0
- Created: 2022-10-05T03:33:43.000Z (over 2 years ago)
- Default Branch: master
- Last Pushed: 2024-02-28T17:24:58.000Z (11 months ago)
- Last Synced: 2024-10-12T00:26:26.371Z (3 months ago)
- Topics: deep-learning, hacktoberfest, machine-learning, numpy, python, scientific-computing, serialization
- Language: Python
- Homepage:
- Size: 50.8 KB
- Stars: 16
- Watchers: 2
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# NumBin
An efficient binary serialization format for numerical data.
## Install
```sh
pip install numbin
```## Usage
Work with pure NumPy data:
```python
import numbin as nb
import numpy as nparr = np.random.rand(5, 3)
# in memory
binary = nb.dumps(arr)
print(nb.loads(binary))# file
with open("num.bin", "wb") as f:
nb.dump(arr, f)with open("num.bin", "rb") as f:
print(nb.load(f))
```Work with complex data:
```python
from numbin.msg_ext import NumBinMessagenbm = NumBinMessage()
data = {"tensor": arr, "labels": ["dog", "cat"], "safe": True}# in memory
binary = nbm.dumps(data)
print(nbm.loads(binary))# file
with open("data.bin", "wb") as f:
nbm.dump(data, f)with open("data.bin", "rb") as f:
print(nbm.load(f))
```## Benchmark
The code can be found in [bench.py](benchmark/bench.py)
Tested with Intel(R) Core(TM) i7-13700K Python 3.11.0.
```shell
pip install .[bench]
python benchmark/bench.py
``````console
>>> benchmark for numpy array
========================================================================================================================
pickle_serde size: 1 times: min(3.33e-06) mid(3.782e-06) max(5.6893e-05) 95%(3.491e-06) Std.(2.1728e-07)
numbin_serde size: 1 times: min(9.9101e-07) mid(1.106e-06) max(0.00016518) 95%(1.032e-06) Std.(1.9601e-07)
numpy_serde size: 1 times: min(4.9589e-05) mid(5.2873e-05) max(0.0010263) 95%(5.0937e-05) Std.(7.0191e-06)
safets_serde size: 1 times: min(3.558e-06) mid(4.141e-06) max(0.00016262) 95%(3.841e-06) Std.(3.9577e-07)
msg_np_serde size: 1 times: min(1.743e-06) mid(1.937e-06) max(3.4253e-05) 95%(1.83e-06) Std.(1.3042e-07)
========================================================================================================================
pickle_serde size: 1024 times: min(3.555e-06) mid(4.158e-06) max(9.9592e-05) 95%(3.813e-06) Std.(5.7795e-07)
numbin_serde size: 1024 times: min(1.204e-06) mid(1.355e-06) max(2.9116e-05) 95%(1.256e-06) Std.(1.668e-07)
numpy_serde size: 1024 times: min(5.0394e-05) mid(5.4297e-05) max(0.00019953) 95%(5.2156e-05) Std.(2.0507e-06)
safets_serde size: 1024 times: min(4.08e-06) mid(4.667e-06) max(4.5634e-05) 95%(4.342e-06) Std.(2.6851e-07)
msg_np_serde size: 1024 times: min(2.081e-06) mid(2.339e-06) max(3.0831e-05) 95%(2.194e-06) Std.(2.1181e-07)
========================================================================================================================
pickle_serde size: 65536 times: min(1.9884e-05) mid(2.1078e-05) max(9.3203e-05) 95%(2.024e-05) Std.(1.2878e-06)
numbin_serde size: 65536 times: min(1.6847e-05) mid(1.7845e-05) max(5.5421e-05) 95%(1.7083e-05) Std.(1.0197e-06)
numpy_serde size: 65536 times: min(0.00010117) mid(0.00010785) max(0.00022275) 95%(0.00010237) Std.(4.3429e-06)
safets_serde size: 65536 times: min(4.0613e-05) mid(4.2319e-05) max(0.00010681) 95%(4.0948e-05) Std.(2.1643e-06)
msg_np_serde size: 65536 times: min(2.4801e-05) mid(2.6234e-05) max(7.0627e-05) 95%(2.5042e-05) Std.(1.2072e-06)
========================================================================================================================
pickle_serde size: 3145728 times: min(0.0077576) mid(0.0080867) max(0.016288) 95%(0.0077705) Std.(0.00068357)
numbin_serde size: 3145728 times: min(0.0093903) mid(0.013968) max(0.014586) 95%(0.013006) Std.(0.00054932)
numpy_serde size: 3145728 times: min(0.016239) mid(0.017057) max(0.017629) 95%(0.01627) Std.(0.00038771)
safets_serde size: 3145728 times: min(0.01532) mid(0.016254) max(0.022971) 95%(0.015348) Std.(0.00083347)
msg_np_serde size: 3145728 times: min(0.016298) mid(0.021077) max(0.021851) 95%(0.019673) Std.(0.00062183)
========================================================================================================================
pickle_serde size: 201326592 times: min(0.89339) mid(0.89483) max(0.89901) 95%(0.89343) Std.(0.0020278)
numbin_serde size: 201326592 times: min(0.87285) mid(0.87507) max(0.87934) 95%(0.87292) Std.(0.0021327)
numpy_serde size: 201326592 times: min(0.76402) mid(0.76939) max(0.8509) 95%(0.76415) Std.(0.032678)
safets_serde size: 201326592 times: min(1.7488) mid(1.7555) max(1.8294) 95%(1.7489) Std.(0.030627)
msg_np_serde size: 201326592 times: min(1.3325) mid(1.3386) max(1.343) 95%(1.3325) Std.(0.004391)
```