Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/moskomule/anatome
Ἀνατομή is a PyTorch library to analyze representation of neural networks
https://github.com/moskomule/anatome
neural-networks pytorch pytorch-library representation-learning
Last synced: 2 months ago
JSON representation
Ἀνατομή is a PyTorch library to analyze representation of neural networks
- Host: GitHub
- URL: https://github.com/moskomule/anatome
- Owner: moskomule
- License: mit
- Created: 2020-07-29T15:53:22.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2023-11-17T20:10:10.000Z (about 1 year ago)
- Last Synced: 2024-11-15T05:32:06.826Z (2 months ago)
- Topics: neural-networks, pytorch, pytorch-library, representation-learning
- Language: Jupyter Notebook
- Homepage:
- Size: 301 KB
- Stars: 62
- Watchers: 4
- Forks: 6
- Open Issues: 4
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# anatome ![](https://github.com/moskomule/anatome/workflows/pytest/badge.svg)
Ἀνατομή is a PyTorch library to analyze internal representation of neural networks
This project is under active development and the codebase is subject to change.
**v0.0.5 introduces significant changes to `distance`.**
## Installation
`anatome` requires
```
Python>=3.9.0
PyTorch>=1.10
torchvision>=0.11
```After the installation of PyTorch, install `anatome` as follows:
```
pip install -U git+https://github.com/moskomule/anatome
```## Available Tools
### Representation Similarity
To measure the similarity of learned representation, `anatome.SimilarityHook` is a useful tool. Currently, the following
methods are implemented.- [Raghu et al. NIPS2017 SVCCA](https://papers.nips.cc/paper/7188-svcca-singular-vector-canonical-correlation-analysis-for-deep-learning-dynamics-and-interpretability)
- [Marcos et al. NeurIPS2018 PWCCA](https://papers.nips.cc/paper/7815-insights-on-representational-similarity-in-neural-networks-with-canonical-correlation)
- [Kornblith et al. ICML2019 Linear CKA](http://proceedings.mlr.press/v97/kornblith19a.html)
- [Ding et al. arXiv Orthogonal Procrustes distance](https://arxiv.org/abs/2108.01661)```python
import torch
from torchvision.models import resnet18
from anatome import Distancerandom_model = resnet18()
learned_model = resnet18(pretrained=True)
distance = Distance(random_model, learned_model, method='pwcca')
with torch.no_grad():
distance.forward(torch.randn(256, 3, 224, 224))# resize if necessary by specifying `size`
distance.between("layer3.0.conv1", "layer3.0.conv1", size=8)
```### Loss Landscape Visualization
- [Li et al. NeurIPS2018](https://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets)
```python
from torch.nn import functional as F
from torchvision.models import resnet18
from anatome import landscape2dx, y, z = landscape2d(resnet18(),
data,
F.cross_entropy,
x_range=(-1, 1),
y_range=(-1, 1),
step_size=0.1)
imshow(z)
```![](assets/landscape2d.svg)
![](assets/landscape3d.svg)### Fourier Analysis
- Yin et al. NeurIPS 2019 etc.,
```python
from torch.nn import functional as F
from torchvision.models import resnet18
from anatome import fourier_mapmap = fourier_map(resnet18(),
data,
F.cross_entropy,
norm=4)
imshow(map)
```![](assets/fourier.svg)
## Citation
If you use this implementation in your research, please cite as:
```
@software{hataya2020anatome,
author={Ryuichiro Hataya},
title={anatome, a PyTorch library to analyze internal representation of neural networks},
url={https://github.com/moskomule/anatome},
year={2020}
}
```