Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/moskomule/homura

homura is a library for fast prototyping DL research
https://github.com/moskomule/homura

pytorch utility

Last synced: about 2 months ago
JSON representation

homura is a library for fast prototyping DL research

Awesome Lists containing this project

README

        

# homura [![document](https://img.shields.io/static/v1?label=doc&message=homura&color=blue)](https://moskomule.github.io/homura)

| master | dev |
| --- | --- |
| ![pytest](https://github.com/moskomule/homura/workflows/pytest/badge.svg) | ![pytest](https://github.com/moskomule/homura/workflows/pytest/badge.svg?branch=dev) |

**homura** is a fast prototyping library for DL research.

🔥🔥🔥🔥 *homura* (焰) is *flame* or *blaze* in Japanese. 🔥🔥🔥🔥

## Requirements

### Minimal requirements

```
Python>=3.9
PyTorch>=1.9.0
torchvision>=0.10.0
```

## Installation

```console
pip install -U homura-core
```

or

```console
pip uninstall homura
pip install -U git+https://github.com/moskomule/homura
```

## Optional

```
faiss (for faster kNN)
accimage (for faster image pre-processing)
cupy (homura)
opt_einsum (for accelerated einsum)
```

## test

```
pytest .
```

# APIs

## Basics

`homura` aims abstract (e.g., device-agnostic) simple prototyping.

```python
from homura import optim, lr_scheduler
from homura import trainers, reporters
from homura.vision import MODEL_REGISTRY, DATASET_REGISTRY
from torch.nn import functional as F

train_loader, test_loader, num_classes = DATASET_REGISTRY('dataset_name')(...)
# User does not need to care about the device
model = MODEL_REGISTRY('model_name')(num_classes=num_classes)

# Model is registered in optimizer lazily. This is convenient for distributed training and other complicated scenes.
optimizer = optim.SGD(lr=0.1, momentum=0.9)
scheduler = lr_scheduler.MultiStepLR(milestones=[30, 80], gamma=0.1)

with trainers.SupervisedTrainer(model,
optimizer,
F.cross_entropy,
reporters=[reporters.TensorboardReporter(...)],
scheduler=scheduler) as trainer:
# epoch-based training
for _ in trainer.epoch_iterator(num_epochs):
trainer.train(train_loader)
trainer.scheduler.step()
trainer.test(test_loader)
trainer.scheduler.step()

# otherwise, iteration-based training

trainer.run(train_loader, test_loader,
total_iterations=1_000, val_intervals=10)

print(f"Max Accuracy={max(trainer.history['accuracy']['tests'])}")
```

You can customize `iteration` of `trainer` as follows.

```python
from homura.trainers import TrainerBase, SupervisedTrainer
from homura.metrics import accuracy

trainer = SupervisedTrainer(...)

# from v2020.08, iteration is much simpler

def iteration(trainer: TrainerBase,
data: Tuple[torch.Tensor, torch.Tensor]
) -> None:
input, target = data
output = trainer.model(input)
loss = trainer.loss_f(output, target)
trainer.reporter.add('loss', loss.detach())
trainer.reporter.add('accuracy', accuracy(input, target))
trainer.reporter.add('')
if trainer.is_train:
trainer.optimizer.zero_grad()
loss.backward()
trainer.optimizer.step()
# in case schedule is step-wise
trainer.scheduler.step()

SupervisedTrainer.iteration = iteration
# or
trainer.update_iteration(iteration)
```

`dict` of models, optimizers, loss functions are supported. This is useful for GANs, for example.

```python
trainer = CustomTrainer({"generator": generator, "discriminator": discriminator},
{"generator": gen_opt, "discriminator": dis_opt},
{"reconstruction": recon_loss, "generator": gen_loss},
**kwargs)
```

`reporter` internally tracks the values during each epoch and reduces after every epoch. Therefore, users can compute
mIoU, for example, as

```python
from homura.metrics import confusion_matrix

def cm_to_miou(cms: List[torch.Tensor]) -> torch.Tensor:
# cms: list of confusion matrices
cm = sum(cms).float()
miou = cm.diag() / (cm.sum(0) + cm.sum(1) - cm.diag())
return miou.mean().item()

def iteration(trainer: TrainerBase,
data: Tuple[torch.Tensor, torch.Tensor]
) -> None:
input, target = data
output = trainer.model(input)
trainer.reporter.add('miou', confusion_matrix(output, target), reduction=cm_to_miou)
...
```

## Distributed training

Distributed training is complicated at glance. `homura` has simple APIs, to hide the messy codes for DDP, such
as `homura.init_distributed` for the initialization and `homura.is_master` for checking if the process is master or not.

For details, see `examples/imagenet.py`.

## Reproducibility

These methods make randomness deterministic in its context.

```python
from homura.utils.reproducibility import set_deterministic, set_seed

with set_deterministic(seed):
# suppress nondeterministic computation
# but will affect the performance
something()

with set_seed(seed):
# only set random seed of Python, PyTorch and Numpy
other_thing()
```

## Registry System

Following major libraries, `homura` also has a simple registry system.

```python
from homura import Registry

MODEL_REGISTRY = Registry("language_models")

@MODEL_REGISTRY.register
class Transformer(nn.Module):
...

# or

MODEL_REGISTRY.register(bert_model, 'bert')

# magic
MODEL_REGISTRY.import_modules(".")

transformer = MODEL_REGISTRY('Transformer')(...)
# or
bert = MODEL_REGISTRY('bert', ...)
```

# Examples

See [examples](examples).

# Citing

```bibtex
@misc{homura,
author = {Ryuichiro Hataya},
title = {homura},
year = {2018},
howpublished = {\url{https:/github.com/moskomule/homura}},
}
```