Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mpds-io/mpds-api
Tutorials, notebooks, issue tracker, and website on the MPDS API: the data retrieval interface for the Materials Platform for Data Science
https://github.com/mpds-io/mpds-api
calphad crystal-structure crystallography data-science materials materials-informatics materials-platform materials-science mpds-api mpds-platform phase-diagram phase-diagrams
Last synced: about 2 months ago
JSON representation
Tutorials, notebooks, issue tracker, and website on the MPDS API: the data retrieval interface for the Materials Platform for Data Science
- Host: GitHub
- URL: https://github.com/mpds-io/mpds-api
- Owner: mpds-io
- Created: 2016-11-21T14:17:47.000Z (about 8 years ago)
- Default Branch: gh-pages
- Last Pushed: 2024-08-29T13:45:59.000Z (4 months ago)
- Last Synced: 2024-08-29T15:18:35.599Z (4 months ago)
- Topics: calphad, crystal-structure, crystallography, data-science, materials, materials-informatics, materials-platform, materials-science, mpds-api, mpds-platform, phase-diagram, phase-diagrams
- Language: HTML
- Homepage: https://developer.mpds.io
- Size: 921 KB
- Stars: 25
- Watchers: 3
- Forks: 3
- Open Issues: 9
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
Materials Platform for Data Science: API
==========The API stands for the *application programming interface*, a way to get the MPDS scientific data automatically in a high-throughput manner for the machine analysis. The possible applications are high-throughput simulations, machine learning, and other *data-intensive* techniques in materials science.
![MPDS: Materials Platform for Data Science](https://raw.githubusercontent.com/mpds-io/mpds-api/gh-pages/figures/materials_platform_for_data_science.png "MPDS: Materials Platform for Data Science")
Here you will find:
- website [developer.mpds.io](https://developer.mpds.io) with the documentation
- issue tracker for the MPDS API (please, report any troubles [creating issues](https://github.com/mpds-io/mpds-api/issues))
- kickoff Python scripts:- [The uranium-oxygen chemical bond length distribution](https://github.com/mpds-io/mpds-api/blob/gh-pages/kickoff/miner_bondlength.py)
- [Clustering the band gaps of binary compounds](https://github.com/mpds-io/mpds-api/blob/gh-pages/kickoff/miner_bgkmeans.py)
- [Statistical relationship of physical property and crystalline structure](https://github.com/mpds-io/mpds-api/blob/gh-pages/kickoff/miner_propstruct.py)
- [Retrieval of binary systems producing no compounds](https://github.com/mpds-io/mpds-api/blob/gh-pages/kickoff/miner_nonformers.py)
- [Calculating the Pilling-Bedworth ratio of metals](https://github.com/mpds-io/mpds-api/blob/gh-pages/kickoff/miner_pb_ratio.py)
- and more, just see the [MPDS API kickoff scripts](https://github.com/mpds-io/mpds-api/tree/gh-pages/kickoff) folder- MPDS API Jupyter notebooks: [![Binder](https://mybinder.org/badge.svg)](https://mybinder.org/v2/gh/mpds-io/mpds-api/gh-pages?filepath=notebooks)
- [Short intro: basic plotting using the periodic table](https://github.com/mpds-io/mpds-api/blob/gh-pages/notebooks/1_plot_pn_vs_eneg.ipynb)
- [Basic MPDS API usage: machine-learning and peer-reviewed data](https://github.com/mpds-io/mpds-api/blob/gh-pages/notebooks/2_mpds_basic.ipynb)
- [Advanced MPDS API usage: unusual materials phases from the machine learning](https://github.com/mpds-io/mpds-api/blob/gh-pages/notebooks/3_mpds_ml_scan.ipynb)
- [Advanced MPDS API usage: pVT-data and EoS fitting](https://github.com/mpds-io/mpds-api/blob/gh-pages/notebooks/4_eos_fit.ipynb)All information here is freely available under the [MIT](https://en.wikipedia.org/wiki/MIT_License) and [CC BY 4.0](https://creativecommons.org/licenses/by/4.0) licenses.
[Login at the MPDS](https://mpds.io/#modal/login) if you'd like to use this API with the **open** MPDS data:
- `cell parameters vs. temperature and pressure diagrams` (about 6k entries)
- `all compounds containing both Ag and K` (about 250 entries)
- `all binary compounds of oxygen` (about 6k entries)
- `all data generated by machine-learning` (about 900k entries)
- `all data generated by first-principles calculations`Contact us at if you'd like to use this API with the **all** MPDS data.