Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mpope9/exor_filter
Erlang nif for xor_filter. 'Faster and Smaller Than Bloom and Cuckoo Filters'.
https://github.com/mpope9/exor_filter
bloom-filter erlang erlang-nif nif probabilistic-data-structures xor-filter
Last synced: about 2 months ago
JSON representation
Erlang nif for xor_filter. 'Faster and Smaller Than Bloom and Cuckoo Filters'.
- Host: GitHub
- URL: https://github.com/mpope9/exor_filter
- Owner: mpope9
- License: apache-2.0
- Created: 2019-12-23T02:17:14.000Z (almost 5 years ago)
- Default Branch: master
- Last Pushed: 2021-12-02T15:49:04.000Z (about 3 years ago)
- Last Synced: 2024-05-05T04:31:13.874Z (7 months ago)
- Topics: bloom-filter, erlang, erlang-nif, nif, probabilistic-data-structures, xor-filter
- Language: C
- Homepage:
- Size: 2.61 MB
- Stars: 31
- Watchers: 1
- Forks: 3
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- fucking-awesome-elixir - exor_filter - Nif for xor_filters. 'Faster and Smaller Than Bloom and Cuckoo Filters'. (Algorithms and Data structures)
- beamtoolbox - [ex
- awesome-elixir - exor_filter - Nif for xor_filters. 'Faster and Smaller Than Bloom and Cuckoo Filters'. (Algorithms and Data structures)
README
exor_filter
=====Nif wrapper for the xor_filter: https://github.com/FastFilter/xor_singleheader
They're 'Faster and Smaller Than Bloom and Cuckoo Filters'.
This library uses dirty nifs for initializing filters over 10K elements! Make sure your environment is setup correctly. Filters of 10M elements can be initialized within 4 seconds. Within 2.5 seconds if the library is used unsafely.
## Table of Contents
* [Benchmarks](#benchmarks)
* [Installation](#installation)
* [Example Usage](#example-usage)
* [Basic Usage](#basic-usage)
* [Incremental Initialization](#incremental-initialization)
* [Hashing](#hashing)
* [Hashing Example](#hashing-example)
* [Hashing API](#hashing-api)
* [Pre-Hashing and Custom Hashing](pre-hashing-and-custom-hashing)
* [Elixir Example](#elixir-example)
* [Custom Return Values](#custom-return-values)
* [Serialization](#serialization)
* [xor16](#xor16)
* [Buffered Initialization](#buffered-initialization)## Benchmarks
The [exor_benchmark](https://github.com/mpope9/exor_bechmark) repo was used to compare access times to popular bloom filter libraries.![Benchmark Graph](/images/results.png)
## Installation
[Available on hex.pm!](https://hex.pm/packages/exor_filter).
For rebar3:
```erlang
%% rebar.config{deps, [
{exor_filter, "0.8.2"}
]}.
```For Mix:
```elixir
## mix.exsdefp deps do
[
{:exor_filter, "~> 0.8.2"}
]
end
```Note, if you're using Erlang below version 23, then use this version of this library: `v0.5.2`. Otherwise, use the latest version.
## Example Usage
### Basic Usage
Basic usage with default hashing is as follows:
```erlang
Filter = xor8:new(["cat", "dog", "mouse"]),
true = xor8:contain(Filter, "cat"),
false = xor8:contain(Filter, "goose").
```Filters are initialized independently:
```erlang
Filter1 = xor8:new([1, 2, 3]),
Filter2 = xor8:new([4, 5, 6]),false = xor8:contain(Filter1, 6),
true = xor8:contain(Filter1, 2),false = xor8:contain(Filter2, 2),
true = xor8:contain(Filter2, 5).
```### Incremental Initialization
This is now the preferred method of usage.
To create a filter incrementally, the following API should be used. It is more memory efficient than providing the entire list at initialization time.
Only the default hashing method is supported. [See the hashing section](#hashing) for more details.
This method will automatically deduplicate the input safely.
**WARNING**: Currently, the incremental API does not use dirty nifs for large input sizes. Be cautious of this, initialization can block.
```erlang
Filter0 = xor8:new_empty(), %% new_empty/0 defaults to 64 elements. Either function
%% will dynamically allocate more space as
%% needed while elements are added.
Filter1 = xor8:add(Filter0, [1, 2]),
Filter2 = xor8:add(Filter1, [3, 4]), %% More space allocated here.
Filter3 = xor8:finalize(Filter3), %% finalize/1 MUST be called to actually intialize the filter.
true = xor8:contain(Filter3, 1),
false = xor8:contain(Filter3, 6).
```Do not modify the return value of any of the functions. The other APIs will not function correctly.
## Hashing
* The function `xor8:new/1` uses the default hash algorithm.
* See [`erlang:phash2/1`](http://erlang.org/doc/man/erlang.html#phash2-1).
* To specify the hashing algorithm to use, use the `xor8:new/2` function.
* The filter initialization functions return values contain the context of hashing, so there is no need to specify it in the `xor8:contain/2` function.
* **Do not pre-hash the value** being passed to `xor8:contain/2` or `/3`. **Pass the raw value!**
* (Unless you've explicitly set that you're using pre-hashed data. See below).
* The default hashing mechanisms remove duplicate keys. Pre-hashed data should be checked by the user. The libary will return an error on initialization if dupes are detected.
### Hashing Example
```erlang
Filter = xor8:new([1, 2, 3], none),
true = xor8:contain(Filter, 1),
false = xor8:contain(Filter, 6).
```### Hashing API
* The default hash function used is [`erlang:phash2/1`](http://erlang.org/doc/man/erlang.html#phash2-1)
* It can be specified with the `default_hash` as the second argument to `xor8:new/2`.
* It uses 60 bits on a 64-bit system and is consistent across nodes.
* The default hashing function should be fine for most use cases, but if the filter has over 20K elements, create your own hashing function, as hashing collisions will become more frequent.
* Errors won't happen if a collision occurs.#### Pre-Hashing and Custom Hashing
* There is an option to pass a hash function during intialization.
* It must return a unsigned 64 bit number and have an airty of `/1`.
* Due to the Erlang nif api lacking the functionality to pass and call a function in a nif, this method creates a second list of equal length. Be weary of that.
* The custom hashing function **must** return unique keys.
* An error will be returned otherwise.
* Make your unit testing reflect reality, if possible. This will catch the issue early.
```erlang
Fun = fun(X) -> X + 1 end,
Filter = xor8:new([1, 2, 3], Fun),
true = xor8:contain(Filter, 4),
false = xor8:contain(Filter, 1).
```* To pass pre-hashed data, use the hash option `none`. The `xor8:contain/2` and `/3` functions must be passed pre-hashed data in this case.
* This too will check for duplicate hashed values, and will return an error if it is detected.## Elixir Example
```elixir
# ...
alias :xor8, as: Xor8
# ...
true =
[1, 2, 3, 4]
|> Xor8.new()
|> Xor8.contain(1)```
## Custom Return Values
`contain/3` can return a custom value instead of `false` if the value isn't present in the filter:
```erlang
Filter1 = xor8:new(["Ricky Bobby", "Cal Naughton Jr."]),
true = xor8:contain(Filter1, "Ricky Bobby", {error, not_found}),
{error, not_found} = xor8:contain(Filter1, "Reese Bobby", {error, not_found}).
```## Serialization
Functions are provided to the filter in binary form, instead of a nif reference. This can be useful to interop with other platforms / systems. The bin returned can be used with `contain` for ease of use. Example usage:
```erlang
Filter = xor8:new(["test1", "test2", "test3"]),
BinFilter = xor8:to_bin(Filter),
{XorFilterBin, _HashFunction} = BinFilter,
true = xor8:contain(BinFilter, "test1").
```## xor16
The usage of the xor16 is the same. That structure is larger, but has a smaller false positive rate. Just sub `xor8` for `xor16` in all of the examples.## Buffered Initialization
The buffered versions of initialize are provided for larger data sets. This can be faster. See `xor8:new_buffered/2` for more information.You didn't hear it from me, though ;)
Build
-----$ rebar3 compile
Test
-----$ rebar3 eunit
$ rebar3 coverDocs
-----$ rebar3 edoc
## Implementations of xor filters in other languages
* [Go](https://github.com/FastFilter/xor_filter)
* Rust: [1](https://github.com/bnclabs/xorfilter) and [2](https://github.com/codri/xorfilter-rs)
* [C++](https://github.com/FastFilter/fastfilter_cpp)
* [Java](https://github.com/FastFilter/fastfilter_java)
* [C](https://github.com/FastFilter/xor_singleheader)