Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mramshaw/ml_with_missing_data
How to handle missing or incomplete data
https://github.com/mramshaw/ml_with_missing_data
incomplete-data machine-learning matplotlib ml numpy pandas python python3 scikit-learn seaborn sklearn
Last synced: about 2 months ago
JSON representation
How to handle missing or incomplete data
- Host: GitHub
- URL: https://github.com/mramshaw/ml_with_missing_data
- Owner: mramshaw
- Created: 2018-12-31T18:31:57.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2024-07-17T06:14:15.000Z (6 months ago)
- Last Synced: 2024-07-17T08:24:39.534Z (6 months ago)
- Topics: incomplete-data, machine-learning, matplotlib, ml, numpy, pandas, python, python3, scikit-learn, seaborn, sklearn
- Language: Python
- Size: 479 KB
- Stars: 1
- Watchers: 1
- Forks: 1
- Open Issues: 26
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# ML with Missing Data
[![Known Vulnerabilities](http://snyk.io/test/github/mramshaw/ML_with_Missing_Data/badge.svg?style=plastic&targetFile=requirements.txt)](http://snyk.io/test/github/mramshaw/ML_with_Missing_Data?style=plastic&targetFile=requirements.txt)
How to handle missing or incomplete data
## Motivation
One subject that often crops up is how to handle missing or incomplete data.
I decided to try this tutorial to get some background on the issue. The
general approach will be as follows:1. Describe the data
2. Check for missing values
3. Fill in any missing values
4. Compare the filled-in values with the original valuesFollowing on from my [ML with SciPy](http://github.com/mramshaw/ML_with_SciPy)
exercise, I make sure to carefully examine the structure of the data first!## Table of Contents
The table of contents is as follows:
* [Missing Data](#missing-data)
* [Data](#data)
* [Summarize the dataset](#summarize-the-dataset)
* [Reference](#reference)
* [cross_val_score](#cross_val_score)
* [distplot](#distplot)
* [dropna](#dropna)
* [fillna](#fillna)
* [isnull](#isnull)
* [mean](#mean)
* [median](#median)
* [mode](#mode)
* [replace](#replace)
* [More on processing missing data](#more-on-processing-missing-data)
* [To Do](#to-do)
* [Credits](#credits)## Missing Data
This is a long-standing issue. If a sensitive or troublesome field is left as
optional, it will tend to be either: left blank, or else populated with values
such as __N/A__ (meaning possibly "Not Applicable" or "Not Available"). So, using
SICs (Sales Industry Codes - which are generally three digits) as an example,
if this field is made mandatory - and validated for being numeric - the easy data
entry options will tend to be either "000" or "999" (although other options for
"unknown" Sales Industry Codes are of course possible). But none of these values
make for good data analysis.[The essential problem is that data entry personnel generally lack both
the training and the data to correctly determine the missing fields.
Plus they are generally paid by volume, so it is not really in their
best interests to spend a lot of time on their data-entry problems.]## Data
We will use the [Pima Indians Diabetes dataset](http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes).
As it no longer seems to be available, we will use the tutorial author's
[version](http://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv).This data is known to have missing values. It consists of:
1. Number of times pregnant
2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test
3. Diastolic blood pressure (mm Hg)
4. Triceps skinfold thickness (mm)
5. 2-Hour serum insulin (mu U/ml)
6. Body mass index (weight in kg/(height in m)^2)
7. Diabetes pedigree function
8. Age (years)
9. Class variable (0 or 1)## Summarize the dataset
This looks as follows:
```bash
$ python missing_data.py
Rows, columns = (768, 9)The first 20 observations
-------------------------
0 1 2 3 4 5 6 7 8
0 6 148 72 35 0 33.6 0.627 50 1
1 1 85 66 29 0 26.6 0.351 31 0
2 8 183 64 0 0 23.3 0.672 32 1
3 1 89 66 23 94 28.1 0.167 21 0
4 0 137 40 35 168 43.1 2.288 33 1
5 5 116 74 0 0 25.6 0.201 30 0
6 3 78 50 32 88 31.0 0.248 26 1
7 10 115 0 0 0 35.3 0.134 29 0
8 2 197 70 45 543 30.5 0.158 53 1
9 8 125 96 0 0 0.0 0.232 54 1
10 4 110 92 0 0 37.6 0.191 30 0
11 10 168 74 0 0 38.0 0.537 34 1
12 10 139 80 0 0 27.1 1.441 57 0
13 1 189 60 23 846 30.1 0.398 59 1
14 5 166 72 19 175 25.8 0.587 51 1
15 7 100 0 0 0 30.0 0.484 32 1
16 0 118 84 47 230 45.8 0.551 31 1
17 7 107 74 0 0 29.6 0.254 31 1
18 1 103 30 38 83 43.3 0.183 33 0
19 1 115 70 30 96 34.6 0.529 32 1
```Examining the first 20 observations, we can see zeroes
(but no troublesome "99" or "999" values - perhaps medical
personnel are closer to the data) in a number of columns.
It is only reasonable that there should be zeroes in the
first and last columns. So we will check for zeroes in all
of the other columns:```bash
Number of zero values
---------------------
1 5
2 35
3 227
4 374
5 11
6 0
7 0
dtype: int64
```It looks like the only problems areas are columns 1,
2, 3, 4 and 5.According to the tutorial, it is standard practice in Python (specifically Pandas,
NumPy and Scikit-Learn) to mark missing values as NaN.Firstly, check for missing values using the Pandas [isnull](#isnull) function before
doing any data munging:```bash
Number of missing fields (original)
-----------------------------------
0 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
dtype: int64Statistics (original)
---------------------
0 1 2 3 4 5 \
count 768.000000 768.000000 768.000000 768.000000 768.000000 768.000000
mean 3.845052 120.894531 69.105469 20.536458 79.799479 31.992578
std 3.369578 31.972618 19.355807 15.952218 115.244002 7.884160
min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
25% 1.000000 99.000000 62.000000 0.000000 0.000000 27.300000
50% 3.000000 117.000000 72.000000 23.000000 30.500000 32.000000
75% 6.000000 140.250000 80.000000 32.000000 127.250000 36.600000
max 17.000000 199.000000 122.000000 99.000000 846.000000 67.1000006 7 8
count 768.000000 768.000000 768.000000
mean 0.471876 33.240885 0.348958
std 0.331329 11.760232 0.476951
min 0.078000 21.000000 0.000000
25% 0.243750 24.000000 0.000000
50% 0.372500 29.000000 0.000000
75% 0.626250 41.000000 1.000000
max 2.420000 81.000000 1.000000
```Now we will use the Pandas [replace](#replace) function to replace our troublesome zero values with __NaN__.
And check again for zero (missing) values:
```bash
Number of missing fields (zero fields flagged as NaN)
-----------------------------------------------------
0 0
1 5
2 35
3 227
4 374
5 11
6 0
7 0
8 0
dtype: int64
```And columns 1, 2, 3, 4 and 5 have missing values.
Lets get the stats for the columns we will be filling:
```bash
Statistics (pre-fill)
---------------------
1 2 3 4 5
count 763.000000 733.000000 541.000000 394.000000 757.000000
mean 121.686763 72.405184 29.153420 155.548223 32.457464
std 30.535641 12.382158 10.476982 118.775855 6.924988
min 44.000000 24.000000 7.000000 14.000000 18.200000
25% 99.000000 64.000000 22.000000 76.250000 27.500000
50% 117.000000 72.000000 29.000000 125.000000 32.300000
75% 141.000000 80.000000 36.000000 190.000000 36.600000
max 199.000000 122.000000 99.000000 846.000000 67.100000
```Note that the counts for our troublesome columns have changed as the
(probably) missing fields are ignored - plus the means and standard
deviations have changed.Lets fill in the missing values with the average (mean) value for that feature.
And check again for missing values (there shouldn't be any):
```bash
Number of missing fields (post-fill)
------------------------------------
0 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
dtype: int64
```Now lets get the stats for the columns we filled-in:
```bash
Statistics (post-fill)
----------------------
1 2 3 4 5
count 768.000000 768.000000 768.000000 768.000000 768.000000
mean 121.681605 72.254807 26.606479 118.660163 32.450805
std 30.436016 12.115932 9.631241 93.080358 6.875374
min 44.000000 24.000000 7.000000 14.000000 18.200000
25% 99.750000 64.000000 20.536458 79.799479 27.500000
50% 117.000000 72.000000 23.000000 79.799479 32.000000
75% 140.250000 80.000000 32.000000 127.250000 36.600000
max 199.000000 122.000000 99.000000 846.000000 67.100000
```The means for columns 3 and 4 are different (in both of these columns
zero was actually the __mode__ - or most common value), but otherwise
it's mainly the distributions that have shifted as the zero values
have been adjusted:![Column 1](images/Column_1.png)
![Column 2](images/Column_2.png)
![Column 3](images/Column_3.png)
![Column 4](images/Column_4.png)
![Column 5](images/Column_5.png)
[Column 5 only had 11 missing values. As it is fairly normally-distributed,
the mode, median and mean distributions seem to be almost identical.]Note that we cannot use a dataset with NaN values for k-fold cross validation:
```bash
Accuracy (with NaN values)
--------------------------
/home/owner/.local/lib/python2.7/site-packages/sklearn/model_selection/_validation.py:542: FutureWarning: From version 0.22, errors during fit will result in a cross validation score of NaN by default. Use error_score='raise' if you want an exception raised or error_score=np.nan to adopt the behavior from version 0.22.
FutureWarning)Input contains NaN, infinity or a value too large for dtype('float64').
```[Throws a __ValueException__, the value of which is shown.]
Now we will use the Pandas [dropna](#dropna) function to drop any entries that contain __NaN__ values.
```bash
Rows, columns (NaN values dropped) = (392, 9)Statistics (NaN values dropped)
-------------------------------
1 2 3 4 5
count 392.000000 392.000000 392.000000 392.000000 392.000000
mean 122.627551 70.663265 29.145408 156.056122 33.086224
std 30.860781 12.496092 10.516424 118.841690 7.027659
min 56.000000 24.000000 7.000000 14.000000 18.200000
25% 99.000000 62.000000 21.000000 76.750000 28.400000
50% 119.000000 70.000000 29.000000 125.500000 33.200000
75% 143.000000 78.000000 37.000000 190.000000 37.100000
max 198.000000 110.000000 63.000000 846.000000 67.100000
```And almost half of our entries have now been dropped.
Let's compare our __k-fold cross validation__ with dropped and filled values:
```bash
Accuracy (with NaN values dropped)
----------------------------------
0.78582892934Accuracy (with NaN values filled)
---------------------------------
0.766927083333
```[These are exactly the same as the tutorial's published values.]
And finally let's use `seaborn` to graph our original values versus dropped values versus filled values:
![Column 1 dropped](images/Column_1_dropped.png)
![Column 2 dropped](images/Column_2_dropped.png)
![Column 3 dropped](images/Column_3_dropped.png)
![Column 4 dropped](images/Column_4_dropped.png)
![Column 5 dropped](images/Column_5_dropped.png)
## Reference
Various useful links (and comments) are listed below.
#### cross_val_score
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html
Will throw a `ValueError` for missing data:
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
#### distplot
http://seaborn.pydata.org/generated/seaborn.distplot.html
Will throw a `ValueError` for missing data:
ValueError: array must not contain infs or NaNs
#### dropna
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.dropna.html
Default behavior is to drop entries where ___Any___ field is NaN.
#### fillna
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.fillna.html
Fill in NA / NaN values.
#### isnull
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.isnull.html
Detects missing values - such as `NaN` in numeric arrays, `None` or `NaN` in object arrays, `NaT` in datetimelike.
#### mean
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.mean.html
Note that the default value for __skipna__ is ___True___, which means invalid data
will be ignored when calculating the column mean.#### median
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.median.html
Note that the default value for __skipna__ is ___True___, which means invalid data
will be ignored when calculating the column median.#### mode
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.mode.html
Note that multiple values may be returned for the selected axis.
Also that the default value for __numeric\_only__ is ___False___.#### replace
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.replace.html
Note that the value to be replaced can also be specified by a regex.
Also that the default value for __inplace__ is ___False___.## More on processing missing data
missing data with `pandas`:
http://pandas.pydata.org/pandas-docs/stable/missing_data.html
missing data with `sklearn`:
http://scikit-learn.org/stable/modules/impute.html#impute
## To Do
- [x] Add a Snyk.io vulnerability scan badge
- [x] Graph before and after (mean, median and mode) values
- [x] Conform code to `pylint`, `pycodestyle` and `pydocstyle` standards
- [ ] Fix annoying `sklearn` __FutureWarning__ warnings
- [ ] Generate a [Monte Carlo](http://en.wikipedia.org/wiki/Monte_Carlo_method) style missing-data dataset
and evaluate how it performs (in comparison to its non-missing-data original)
- [ ] Finish tutorial## Credits
I (mainly) followed this excellent tutorial:
http://machinelearningmastery.com/handle-missing-data-python/