Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mrdimosthenis/scala-synapses
A plug-and play library for neural networks written in Scala 3
https://github.com/mrdimosthenis/scala-synapses
deep-learning dotty functional-programming machine-learning neural-network scala
Last synced: 3 months ago
JSON representation
A plug-and play library for neural networks written in Scala 3
- Host: GitHub
- URL: https://github.com/mrdimosthenis/scala-synapses
- Owner: mrdimosthenis
- Created: 2021-07-25T10:28:49.000Z (over 3 years ago)
- Default Branch: master
- Last Pushed: 2024-08-16T11:50:06.000Z (5 months ago)
- Last Synced: 2024-08-16T12:47:31.180Z (5 months ago)
- Topics: deep-learning, dotty, functional-programming, machine-learning, neural-network, scala
- Language: Scala
- Homepage: https://mrdimosthenis.github.io/scala-synapses/target/scala-3.0.1/api/api/synapses/Documentation$.html
- Size: 9.24 MB
- Stars: 3
- Watchers: 4
- Forks: 1
- Open Issues: 1
-
Metadata Files:
- Readme: readme.md
Awesome Lists containing this project
README
# scala-synapses
A plug-and-play library for **neural networks** written in **Scala 3**!
## Basic usage
### Install synapses
```scala
libraryDependencies += "com.github.mrdimosthenis" %% "synapses" % "8.0.0"
```### Import the `Net` object
```scala
import synapses.lib.Net
```### Create a random neural network by providing its layer sizes
```scala
val randNet = Net(List(2, 3, 1))
```* Input layer: the first layer of the network has 2 nodes.
* Hidden layer: the second layer has 3 neurons.
* Output layer: the third layer has 1 neuron.### Get the json of the random neural network
```scala
randNet.json()
// res0: String = """[
// [{"activationF" : "sigmoid", "weights" : [-0.5,0.1,0.8]},
// {"activationF" : "sigmoid", "weights" : [0.7,0.6,-0.1]},
// {"activationF" : "sigmoid", "weights" : [-0.8,-0.1,-0.7]}],
// [{"activationF" : "sigmoid", "weights" : [0.5,-0.3,-0.4,-0.5]}]
// ]"""
```### Create a neural network by providing its json
```scala
val net = Net("""[
[{"activationF" : "sigmoid", "weights" : [-0.5,0.1,0.8]},
{"activationF" : "sigmoid", "weights" : [0.7,0.6,-0.1]},
{"activationF" : "sigmoid", "weights" : [-0.8,-0.1,-0.7]}],
[{"activationF" : "sigmoid", "weights" : [0.5,-0.3,-0.4,-0.5]}]
]""")
```### Make a prediction
```scala
net.predict(List(0.2, 0.6))
// res1: List[Double] = List(0.49131100324012494)
```### Train a neural network
```scala
net.fit(
learningRate = 0.1,
inputValues = List(0.2, 0.6),
expectedOutput = List(0.9)
)
```The `fit` method returns the neural network with its weights adjusted to a single observation.
## Advanced usage
### Fully train a neural network
In practice, for a neural network to be fully trained, it should be fitted with multiple observations,
usually by folding over an iterator.```scala
Iterator(
(List(0.2, 0.6), List(0.9)),
(List(0.1, 0.8), List(0.2)),
(List(0.5, 0.4), List(0.6))
).foldLeft(net){ case (acc, (xs, ys)) =>
acc.fit(learningRate = 0.1, xs, ys)
}
```### Boost the performance
Every function is efficient because its implementation is based on lazy list
and all information is obtained at a single pass.For a neural network that has huge layers, the performance can be further improved
by using the parallel counterparts of `predict` and `fit` (`parPredict` and `parFit`).### Create a neural network for testing
```scala
Net(layerSizes = List(2, 3, 1), seed = 1000)
```We can provide a `seed` to create a non-random neural network.
This way, we can use it for testing.### Define the activation functions and the weights
```scala
import scala.util.Random
import synapses.lib.Fundef activationF(layerIndex: Int): Fun =
layerIndex match
case 0 => Fun.sigmoid
case 1 => Fun.identity
case 2 => Fun.leakyReLU
case 3 => Fun.tanhdef weightInitF(layerIndex: Int): Double =
(layerIndex + 1) * (1.0 - 2.0 * Random().nextDouble())val customNet = Net(layerSizes = List(4, 6, 8, 5, 3), activationF, weightInitF)
```* The `activationF` function accepts the index of a layer and returns an activation function for its neurons.
* The `weightInitF` function accepts the index of a layer and returns a weight for the synapses of its neurons.If we don't provide these functions, the activation function of all neurons is sigmoid,
and the weight distribution of the synapses is normal between -1.0 and 1.0.### Draw a neural network
```scala
customNet.svg()
```![Network Drawing](https://github.com/mrdimosthenis/scala-synapses/blob/master/neural_network.png?raw=true)
With its svg drawing, we can see what a neural network looks like.
The color of each neuron depends on its activation function
while the transparency of the synapses depends on their weight.### Measure the difference between the expected and predicted values
```scala
import synapses.lib.Stats
def expAndPredVals() =
Iterator(
(List(0.0, 0.0, 1.0), List(0.0, 0.1, 0.9)),
(List(0.0, 1.0, 0.0), List(0.8, 0.2, 0.0)),
(List(1.0, 0.0, 0.0), List(0.7, 0.1, 0.2)),
(List(1.0, 0.0, 0.0), List(0.3, 0.3, 0.4)),
(List(0.0, 0.0, 1.0), List(0.2, 0.2, 0.6))
)
```* Root-mean-square error
```scala
Stats.rmse(expAndPredVals())
// res6: Double = 0.6957010852370435
```* Classification accuracy score
```scala
Stats.score(expAndPredVals())
// res7: Double = 0.6
```### Import the `Codec` object
```scala
import synapses.lib.Codec
```* One hot encoding is a process that turns discrete attributes into a list of 0.0 and 1.0.
* Minmax normalization scales continuous attributes into values between 0.0 and 1.0.```scala
val setosa = Map(
"petal_length" -> "1.5",
"petal_width" -> "0.1",
"sepal_length" -> "4.9",
"sepal_width" -> "3.1",
"species" -> "setosa"
)val versicolor = Map(
"petal_length" -> "3.8",
"petal_width" -> "1.1",
"sepal_length" -> "5.5",
"sepal_width" -> "2.4",
"species" -> "versicolor"
)val virginica = Map(
"petal_length" -> "6.0",
"petal_width" -> "2.2",
"sepal_length" -> "5.0",
"sepal_width" -> "1.5",
"species" -> "virginica"
)def dataset() = Iterator(setosa,versicolor,virginica)
```You can use a `Codec` to encode and decode a data point.
### Create a `Codec` by providing the attributes and the data points
```scala
val codec = Codec(
List(("petal_length", false),
("petal_width", false),
("sepal_length", false),
("sepal_width", false),
("species", true)),
dataset()
)
```* The first parameter is a list of pairs that define the name and the type (discrete or not) of each attribute.
* The second parameter is an iterator that contains the data points.### Get the json of the codec
```scala
val codecJson = codec.json()
// codecJson: String = """[
// {"Case" : "SerializableContinuous",
// "Fields" : [{"key" : "petal_length","min" : 1.5,"max" : 6.0}]},
// {"Case" : "SerializableContinuous",
// "Fields" : [{"key" : "petal_width","min" : 0.1,"max" : 2.2}]},
// {"Case" : "SerializableContinuous",
// "Fields" : [{"key" : "sepal_length","min" : 4.9,"max" : 5.5}]},
// {"Case" : "SerializableContinuous",
// "Fields" : [{"key" : "sepal_width","min" : 1.5,"max" : 3.1}]},
// {"Case" : "SerializableDiscrete",
// "Fields" : [{"key" : "species","values" : ["virginica","versicolor","setosa"]}]}
// ]"""
```### Create a codec by providing its json
```scala
Codec(codecJson)
```### Encode a data point
```scala
val encodedSetosa = codec.encode(setosa)
// encodedSetosa: List[Double] = List(0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0)
```### Decode a data point
```scala
codec.decode(encodedSetosa)
// res9: Map[String, String] = HashMap(
// "species" -> "setosa",
// "sepal_width" -> "3.1",
// "petal_width" -> "0.1",
// "petal_length" -> "1.5",
// "sepal_length" -> "4.9"
// )
```