An open API service indexing awesome lists of open source software.

https://github.com/mrqadeer/huggingface_togetherai

A powerful LangChain wrapper for integrating Hugging Face API with Together AI, enabling seamless access to cutting-edge DeepSeek-R1 and Meta LLaMA models (e.g., meta-llama/Llama-3.3-70B-Instruct-Turbo).
https://github.com/mrqadeer/huggingface_togetherai

deepseek-r1 huggingface langchain-python meta-llama togetherai

Last synced: 8 months ago
JSON representation

A powerful LangChain wrapper for integrating Hugging Face API with Together AI, enabling seamless access to cutting-edge DeepSeek-R1 and Meta LLaMA models (e.g., meta-llama/Llama-3.3-70B-Instruct-Turbo).

Awesome Lists containing this project

README

          

# 🚀 Huggingface-TogetherAI LangChain Wrapper

[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Python Version](https://img.shields.io/badge/python-3.11%2B-blue.svg)](https://www.python.org/)

A **LangChain** integration for **DeepSeek-R1** and **Meta Llama-3.3-70B-Instruct-Turbo** models via **Hugging Face's Inference API**, enabling seamless interaction with state-of-the-art language models.

## ✨ Features

- 🚀 **Custom LangChain Chat Model** – Optimized for Hugging Face + Together AI.
- ⚡ **Sync & Async Support** – Run queries in synchronous or asynchronous mode.
- 🌊 **Streaming Capabilities** – Supports token streaming for real-time responses.
- 🛠️ **Tool Calling & Structured Output** – Enables function calling and JSON outputs.
- 🔧 **Configurable Model Parameters** – Fine-tune temperature, max tokens, etc.

## 📦 Installation

```bash
pip install huggingface-togetherai
```

## 🚀 Quick Start

```python
from huggingface_togetherai import ChatHuggingFaceTogetherAI

hf_token = "your_huggingface_token"
hf_llm = ChatHuggingFaceTogetherAI(
model="deepseek-ai/DeepSeek-R1",
hf_token=hf_token
)

response = hf_llm.invoke("Hi!")
print(response)
```

## 🤔 Why Use Huggingface-TogetherAI?

In **LangChain**, the `HuggingFaceEndpoint` class is typically used for Hugging Face models:

```python
from langchain_huggingface import HuggingFaceEndpoint
from langchain_huggingface.chat_models import ChatHuggingFace

hf_endpoint = HuggingFaceEndpoint(
repo_id="deepseek-ai/DeepSeek-R1",
task="text-generation",
huggingfacehub_api_token=hf_token
)

langchain_llm = ChatHuggingFace(llm=hf_endpoint)
langchain_llm.invoke("Hello")
```

However, this results in an error:

```
The model deepseek-ai/DeepSeek-R1 is too large to be loaded automatically (688GB > 10GB).
```

### ✅ The Better Alternative: Huggingface-TogetherAI

With **Huggingface-TogetherAI**, you can seamlessly use large models without running into memory issues:

```python
from huggingface_togetherai import ChatHuggingFaceTogetherAI

hf_llm = ChatHuggingFaceTogetherAI(
model="deepseek-ai/DeepSeek-R1",
hf_token=hf_token,
other_params...
)

response = hf_llm.invoke("Hello")
print(response) # Output: '\n\n\n\nHello! How can I assist you today? 😊'
```

### 🎉 Good News!

✅ You can leverage **all [Langchain](https://www.langchain.com/) functionalities** for standard LLMs with this package.

## 📜 License

This project is licensed under the **MIT License**. See the [LICENSE](LICENSE) file for more details.