https://github.com/mrtkp9993/quantitavefinanceexamplespy
Financial analysis, algorithmic trading, portfolio optimization examples with Python (DISCLAIMER - No Investment Advice Provided, YASAL UYARI - Yatırım tavsiyesi değildir).
https://github.com/mrtkp9993/quantitavefinanceexamplespy
market-data portfolio-optimization python quant quantitative-finance quantitative-trading stock-analysis stock-market
Last synced: 2 months ago
JSON representation
Financial analysis, algorithmic trading, portfolio optimization examples with Python (DISCLAIMER - No Investment Advice Provided, YASAL UYARI - Yatırım tavsiyesi değildir).
- Host: GitHub
- URL: https://github.com/mrtkp9993/quantitavefinanceexamplespy
- Owner: mrtkp9993
- License: gpl-3.0
- Created: 2021-08-29T11:51:38.000Z (about 4 years ago)
- Default Branch: main
- Last Pushed: 2022-11-25T15:14:02.000Z (almost 3 years ago)
- Last Synced: 2025-05-07T16:45:00.609Z (5 months ago)
- Topics: market-data, portfolio-optimization, python, quant, quantitative-finance, quantitative-trading, stock-analysis, stock-market
- Language: Jupyter Notebook
- Homepage:
- Size: 10.1 MB
- Stars: 45
- Watchers: 4
- Forks: 9
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
- License: LICENSE
Awesome Lists containing this project
README
# QuantitaveFinanceExamplesPy
Financial analysis, algorithmic trading, portfolio optimization examples with Python
DISCLAIMER - No Investment Advice Provided
YASAL UYARI - Burada yer alan yatırım bilgi, yorum ve tavsiyeleri yatırım danışmanlığı kapsamında değildir.
## Requirements
Please install requirements from `requirements.txt`.
## References (for both methods and some code fragments)
* Hilpisch, Y. J. (2021). Python for algorithmic trading: From idea to cloud deployment. O'Reilly.
* Jansen, S. (2020). Machine learning for algorithmic trading: Predictive models to extract signals from market and alternative data for systematic trading strategies with python. Packt Publishing.
* Pik, J., & Ghosh, S. (2021). Hands-on financial trading with python. Packt Publishing.
* Velu, R. P., Hardy, M., & Nehren, D. (2020). Algorithmic trading and quantitative strategies. CRC Press, Taylor & Francis Group.
* Brugiere, P. (2021). Quantitative portfolio management: With applications in python. Springer Nature.
* Dowd, K. (2007). Measuring market risk. John Wiley & Sons.
* Hilpisch, Y. J. (2020). Artificial Intelligence in Finance. O'Reilly.## Contact
Murat Koptur, [LinkedIn](https://www.linkedin.com/in/muratkoptur/)
Email: [muratkoptur@yandex.com](mailto:muratkoptur@yandex.com?subject=QuantitativeFinanceGithub)
## Examples
**Note**: In all examples, assumed the risk-free rate is zero.
### Calculation Alpha and Beta factors

### Cointegration
```text
ARCLK.IS and TOASO.IS has cointegration, p-value: 0.04903369798110527
AYGAZ.IS and KCHOL.IS has cointegration, p-value: 0.007029900251131765
FROTO.IS and MAALT.IS has cointegration, p-value: 0.015757028038897322
FROTO.IS and OTKAR.IS has cointegration, p-value: 0.004399007493986555
KCHOL.IS and AYGAZ.IS has cointegration, p-value: 0.007101145930953294
MAALT.IS and FROTO.IS has cointegration, p-value: 0.00783799297255268
OTKAR.IS and FROTO.IS has cointegration, p-value: 0.003094678911810982
OTKAR.IS and TTRAK.IS has cointegration, p-value: 0.04185601871282213
OTKAR.IS and YKGYO.IS has cointegration, p-value: 0.00282083357242191
TTRAK.IS and OTKAR.IS has cointegration, p-value: 0.03639137062922606
TTRAK.IS and YKGYO.IS has cointegration, p-value: 0.03834839887528665
YKGYO.IS and OTKAR.IS has cointegration, p-value: 0.0017665073676291331
YKGYO.IS and TOASO.IS has cointegration, p-value: 0.046004150077470406
YKGYO.IS and TTRAK.IS has cointegration, p-value: 0.027200620035757236
```### PCA on Returns

### Volatility calculations
```text
Std.Dev. Estimator: 0.16988244687319595
Classical Estimator: 0.0013349197336295028
Rogers - Satchell Estimator: 0.0009643228704150725
Yang - Zang estimator: 0.0016329397449278639
```### Volatility-Volume Relationship

### AR-ARCH models for volatility

### VWAP

### Technical Indicators

### Denoising Data

### Trading Signals

### Backtesting

### Pairs Trading

### Modern Portfolio Theory - Efficient Frontier

### Value-At-Risk - Expected Shortfall
