Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mrzresearcharena/irecspot
iRecSpot-EF: Effective Sequence Based Features for Recombination Hotspot Prediction
https://github.com/mrzresearcharena/irecspot
bioinformatics computational-biology genomics machine-learning recombination-hotspot-prediction
Last synced: about 1 month ago
JSON representation
iRecSpot-EF: Effective Sequence Based Features for Recombination Hotspot Prediction
- Host: GitHub
- URL: https://github.com/mrzresearcharena/irecspot
- Owner: mrzResearchArena
- License: gpl-3.0
- Created: 2018-03-07T20:19:39.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2020-08-08T08:20:47.000Z (over 4 years ago)
- Last Synced: 2023-10-19T23:54:15.783Z (about 1 year ago)
- Topics: bioinformatics, computational-biology, genomics, machine-learning, recombination-hotspot-prediction
- Language: Python
- Homepage: http://rafsanjani.pythonanywhere.com/
- Size: 901 KB
- Stars: 7
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
## iRecSpot-EF: Effective Sequence Based Features for Recombination Hotspot Prediction
### Installation Process :
Required Python Packages:Install: python (version >= 3.5)
Install: sklearn (version >= 0.19.0)
Install: numpy (version >= 1.13.0)
Install: pandas (version >= 0.21.0)
Install: matplotlib (version >= 2.1.0)
Install: picklepip install < package name >
example: pip install sklearnor
We can download from anaconda cloud.### Code Description :
- **Features Extraction :**
```console
user@machine:~$ python extractionFeatures.py
```
Note #1: It will provide a dataset named **fullDataset.csv** from FASTA sequences.
([fullDataset.csv](https://drive.google.com/file/d/1-DHKnHMcVDZATUYZ8BwQzdLUAWQJRxyg/))Note #2: **readXY.py** ( This file will fetch data from **hotSpot.fasta** and **coldSpot.fasta** files. )
- **Features Selection :**
```console
user@machine:~$ python selectionFeatures.py
```
Note #1: It will provide a dataset named **selectedDataset.csv** from **fullDataset.csv**.- **Training Model :**
``` console
user@machine:~$ python modelDump