An open API service indexing awesome lists of open source software.

https://github.com/msikorski93/detecting-panic-disorder

Panic disorder detecting using machine learning techniques.
https://github.com/msikorski93/detecting-panic-disorder

artificial-neural-networks classification knn logistic-regression machine-learning panic-disorder random-forest scikit-learn sgd svm tensorflow xgboost

Last synced: 8 months ago
JSON representation

Panic disorder detecting using machine learning techniques.

Awesome Lists containing this project

README

          

# Detecting-Panic-Disorder
![ alt text ](https://img.shields.io/badge/license-MIT-green?style=&logo=)
![ alt text ](https://img.shields.io/badge/-Jupyter-F37626?logo=Jupyter&logoColor=white)
![ alt text ](https://img.shields.io/badge/-scikit--learn-F7931E?logo=scikitlearn&logoColor=white)
![ alt text ](https://img.shields.io/badge/-pandas-150458?logo=Pandas&logoColor=white)
![ alt text ](https://img.shields.io/badge/-TensorFlow-FF6F00?logo=TensorFlow&logoColor=white)
![ alt text ](https://img.shields.io/badge/-Keras-D00000?logo=Keras&logoColor=white)

The main motive behind this notebook was to develop accurate models or frameworks for detecting panic disorder. Based on collected symptoms and demographic data of respondents a binary classification was performed using machine learning techniques. To complete this task, we developed seven diverse classification models and evaluated their performance (displayed in table). We proved that class predicting in this dataset is possible. The best solution for this problem was applying the extreme gradient boosting model.

| | SVM | RF | LR | XGB | KNN | SGD | ANN |
|-----------|----------|----------|----------|----------|----------|----------|----------|
| Accuracy | 0.817111 | 0.965667 | 0.960694 | 0.967833 | 0.959028 | 0.843556 | 0.965139 |
| F1-score | 0.303575 | 0.476271 | 0.242100 | 0.599030 | 0.288471 | 0.325670 | 0.476865 |
| Precision | 0.180186 | 0.645977 | 0.599469 | 0.618741 | 0.512864 | 0.198193 | 0.629263 |
| Recall | 0.963087 | 0.377181 | 0.151678 | 0.580537 | 0.200671 | 0.912752 | 0.383893 |
| AUC | 0.886948 | 0.684128 | 0.573651 | 0.782546 | 0.596221 | 0.876660 | 0.687064 |
| TN | 27981 | 34202 | 34359 | 33977 | 34226 | 29008 | 34173 |
| FP | 6529 | 308 | 151 | 533 | 284 | 5502 | 337 |
| FN | 55 | 928 | 1264 | 625 | 1191 | 130 | 918 |
| TP | 1435 | 562 | 226 | 865 | 299 | 1360 | 572 |
| MCC | 0.371385 | 0.477658 | 0.288230 | 0.582614 | 0.303686 | 0.382023 | 0.475013 |