Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/msikorski93/persian-digits-lenet-5-scikit-learn
Image recognition on Persian handwritten digits with LeNet-5 neural network and scikit-learn models.
https://github.com/msikorski93/persian-digits-lenet-5-scikit-learn
classification gradient-boosting hard-voting-classifier image-recognition k-nearest-neighbors lenet-5 lightgbm persian-digits tensorflow
Last synced: 9 days ago
JSON representation
Image recognition on Persian handwritten digits with LeNet-5 neural network and scikit-learn models.
- Host: GitHub
- URL: https://github.com/msikorski93/persian-digits-lenet-5-scikit-learn
- Owner: msikorski93
- Created: 2023-11-30T13:42:08.000Z (12 months ago)
- Default Branch: main
- Last Pushed: 2024-10-22T16:39:27.000Z (29 days ago)
- Last Synced: 2024-11-11T09:09:36.261Z (9 days ago)
- Topics: classification, gradient-boosting, hard-voting-classifier, image-recognition, k-nearest-neighbors, lenet-5, lightgbm, persian-digits, tensorflow
- Language: Jupyter Notebook
- Homepage:
- Size: 432 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Persian-Digits-LeNet-5
![ alt text ](https://img.shields.io/badge/license-MIT-green?style=&logo=)
![ alt text ](https://img.shields.io/badge/-Jupyter-F37626?logo=Jupyter&logoColor=white)
![ alt text ](https://img.shields.io/badge/-Keras-D00000?logo=Keras&logoColor=white)
![ alt text ](https://img.shields.io/badge/-TensorFlow-FF6F00?logo=TensorFlow&logoColor=white)
![ alt text ](https://img.shields.io/badge/-NumPy-013243?logo=Numpy&logoColor=white)
![ alt text ](https://img.shields.io/badge/-scikit--learn-F7931E?logo=scikitlearn&logoColor=white)New update for October 2024. Persian digits were predicted with `scikit-learn` models and hard voting. The top estimator was the histogram-based gradient boosting algorithm with accuracy 0.9972 ± 0.0003 achieved in cross-validation for test dataset.
Image recognition on handwritten Persian digits performed with LeNet-5 architecture. Accuracy achieved on test dataset: 0.9964.